首页> 中文期刊> 《建筑模拟(英文版)》 >Design and optical characterisation of an efficient light trapping structure for dye-sensitized solar cell integrated windows

Design and optical characterisation of an efficient light trapping structure for dye-sensitized solar cell integrated windows

     

摘要

Windows integrated with semi-transparent photovoltaics (PVs) such as Dye-Sensitized Solar Cells (DSSCs) show good potential in improving building performance, in terms of providing daylight, reducing unnecessary solar heat gain and also generating electricity onsite. However, low cell efficiency remains an obstacle for their applications in windows. Using light trapping structures in DSSCs shows the potential to improve solar to electrical conversion efficiency. In this work, different pyramid-patterned titanium dioxide (TiO2) geometries are designed to enhance the photon absorption in DSSCs, and characterised using a Monte-Carlo algorithm based 3D ray-tracing simulation. Various studies were carried out under average irradiation, spectrum dependent irradiation and different solar incidental angles, respectively. The simulation results at the average irradiation wavelength (540 nm) were compared to those from a previous study using Scanning Photocurrent Microscopy (SPCM) and a reasonable agreement has been achieved. It was found that the structure based on the pyramid array of side wall angle 54.7° can significantly enhance light absorption by up to ~25% and the maximum achievable photocurrent density (MAPD) by up to~45% across the spectrum of 380–800 nm, when compared to a planar control counterpart.

著录项

  • 来源
    《建筑模拟(英文版)》 |2019年第1期|41-49|共9页
  • 作者

  • 作者单位
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号