首页> 中文期刊> 《应用数学和力学:英文版》 >Modeling biomembranes and red blood cells by coarse-grained particle methods

Modeling biomembranes and red blood cells by coarse-grained particle methods

     

摘要

In this work, the previously developed coarse-grained(CG) particle models for biomembranes and red blood cells(RBCs) are reviewed, and the advantages of the CG particle methods over the continuum and atomistic simulations for modeling biological phenomena are discussed. CG particle models can largely increase the length scale and time scale of atomistic simulations by eliminating the fast degrees of freedom while preserving the mesoscopic structures and properties of the simulated system. Moreover, CG particle models can be used to capture the microstructural alternations in diseased RBCs and simulate the topological changes of biomembranes and RBCs, which are the major challenges to the typical continuum representations of membranes and RBCs. The power and versatility of CG particle methods are demonstrated through simulating the dynamical processes involving significant topological changes, e.g., lipid self-assembly vesicle fusion and membrane budding.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号