首页> 中文期刊> 《计算机应用研究》 >基于多智能体深度强化学习的车联网可信任务卸载策略

基于多智能体深度强化学习的车联网可信任务卸载策略

     

摘要

针对车联网中边缘节点的可信性无法保证的问题,提出了一种基于声誉的车联网可信任务卸载模型,用记录在区块链上的边缘节点声誉来评估其可信度,从而帮助终端设备选取可靠的边缘节点进行任务卸载。同时,将卸载策略建模为声誉约束下的时延和能耗最小化问题,采用多智能体深度确定性策略梯度算法来求解该NP-hard问题的近似最优解,边缘服务器依据任务卸载的完成情况获得奖励,然后据此更新记录在区块链上的声誉。仿真实验表明,与基准测试方案相比,该算法在时延和能耗方面降低了25.58%~27.44%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号