首页> 中文期刊> 《物理学报 》 >(2+1)维高阶Broer-Kaup系统的非局域对称及相互作用解∗

(2+1)维高阶Broer-Kaup系统的非局域对称及相互作用解∗

             

摘要

利用非局域对称方法及相容tanh展开法研究了(2+1)维高阶Broer-Kaup系统。通过对Broer-Kaup系统的留数对称进行局域化,把非局域对称转化成等价的李点对称,同时得到了相应的对称群。利用相容tanh展开方法,得到了(2+1)维高阶Broer-Kaup系统的多种形式的波与孤立子的相互作用解,如椭圆周期波与孤立子等。为了研究这些解的动力学行为,本文给出了解的相应图像。%Finding explicit solutions of nonlinear partial differential equation is one of the most important problems in mathematical physics. And it is very difficult to find interaction solutions among different types of nonlinear excitations except for soliton-soliton interactions. It is known that Painlevé analysis is an important method to investigate the integrable property of a given nonlinear evolution equation, and the truncated Painlevé expansion method is a straight way to provide auto-Bäcklund transformation and analytic solution, furthermore, it can also be used to obtain nonlocal symmetries. Symmetry group theory plays an important role in constructing explicit solutions, whether the equations are integrable or not. By applying the nolocal symmetry method, many new exact group invariant solution can be obtained. This method is greatly valid for constructing various interaction solutions between different types of excitations, for example, solitons, cnoidal waves, Painlevé waves, Airy waves, Bessel waves, etc. It has been revealed that many more integrable systems are consistent tanh expansion (CTE) solvable and possess quite similar interaction solutions which can be described by the same determining equation with different constant constraints. In this paper, the (2+1)-dimensional higher-order Broer-Kaup (HBK) system is studied by the nonlocal symmetry method and CTE method. By using the nonlocal symmetry method, the residual symmetries of (2+1)-dimensional higher order Broer-Kaup system can be localized to Lie point symmetries after introducing suitable prolonged systems, and symmetry groups can also be obtained from the Lie point symmetry approach via the localization of the residual symmetries. By developing the truncated Painlevé analysis, we use the CTE method to solve the HBK system. It is found that the HBK system is not only integrable under some nonstandard meaning but also CTE solvable. Some interaction solutions among solitons and other types of nonlinear waves which may be explicitly expressed by the Jacobi elliptic functions and the corresponding elliptic integral are constructed. To leave it clear, we give out four types of soliton+cnoidal periodic wave solutions. In order to study their dynamic behaviors, corresponding images are explicitly given.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号