首页> 中文期刊> 《物理学报》 >高功率微波注入对流层对氟利昂的影响

高功率微波注入对流层对氟利昂的影响

             

摘要

采用高功率微波注入大气的方法来促进氟利昂的分解具有一定可行性,本文基于麦克斯韦方程、电流密度控制方程等,利用时域有限差分法定量分析了高功率微波注入不同对流层高度促进电子生成从而促进氟利昂分解的过程.结果显示,在微波作用下,电子数密度随时间呈指数增长,最大能达到1017 cm?3;电子对氟利昂的分解主要发生在电子衰减过程中,利用估算公式和化学反应过程两种方法计算得出的分解率一致,能够达到6%.%High power microwave injection into the troposphere is a feasible approach to the decomposition of chlorofluoro-carbon (CFC). However, in existing researches, there are only basic principles which lack quantitative tests. Hence, in this article we introduce the finite-difference time-domain method to quantitatively analyze the decomposition of CFC under high power pulses. We first investigate the principal chemical reactions of CFC decomposition induced by high power microwave injection and find that dissociation attachment is a dominant process of the microwave discharge decomposition of CFC. We use an empirical formula to calculate the decomposition efficiency of CFC. The result shows that 20%of the initial content of CFC molecules will be dissociated over 100 microseconds where we assume the electron number density to be 1013 cm?3. Then according to Maxwell's equations and the current density equation, we adopt the finite difference time domain method to simulate the generation process of a large number of free electrons induced by injecting the high power microwaves into the troposphere. The ionized electron generated by the high power microwave in troposphere is in favor of CFC decomposition since the electron affinity of CFC is larger than dissociation energy of CFC molecules. The simulation results indicate that the number density of electrons grows up to 1017 cm?3 exponentially with the injection time and will grow faster at higher height (<10 km) or by the larger field intensity. During the pulse, the higher electron energy corresponds to a smaller dissociative attachment coefficient. Thus, most of the CFC molecules are decomposed during the electron-decay phase. During the relaxation period, the electron energy will return to the natural state within 0.01 ns. The number density of electrons decreases slower than the electron energy and it will take 1 ms to reach the natural state. From the results we can also see that the decay rates of the electron energy and number density decrease with the increase of the height. In this paper, two methods of calculating the CFC decomposition rate are utilized. One method is from the chemical reaction and the other method is based on an empirical formula which is mentioned before. It is shown that the results of these two methods present obvious consistency. The simulation results demonstrate that the CFC decomposition rate will increase with larger microwave intensity or higher frequency and can approach up to 6%. In conclusion, this study gives the quantitative analyses of the CFC decomposition induced by high power microwave injection in the troposphere for the first time.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号