首页>
中文期刊>
《数学物理学报:B辑英文版》
>REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATION WITH JUMPS AND VISCOSITY SOLUTION OF SECOND ORDER INTEGRO-DIFFERENTIAL EQUATION WITHOUT MONOTONICITY CONDITION: CASE WITH THE MEASURE OF LéVY INFINITE
REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATION WITH JUMPS AND VISCOSITY SOLUTION OF SECOND ORDER INTEGRO-DIFFERENTIAL EQUATION WITHOUT MONOTONICITY CONDITION: CASE WITH THE MEASURE OF LéVY INFINITE
We consider the problem of viscosity solution of integro-partial differential equation( IPDE in short) with one obstacle via the solution of reflected backward stochastic dif ferential equations(RBSDE in short) with jumps. We show the existence and uniqueness of a continuous viscosity solution of equation with non local terms, if the generator is not monotonous and Levy's measure is infinite.
展开▼