首页> 外文学位 >An Event-Based Vision Sensor Simulation Framework for Space Domain Awareness Applications
【24h】

An Event-Based Vision Sensor Simulation Framework for Space Domain Awareness Applications

机译:面向空间域感知应用的基于事件的视觉传感器仿真框架

获取原文
获取原文并翻译 | 示例

摘要

Event-based vision sensors (EVS) provide a unique opportunity for Space Domain Awareness (SDA) applications. Inspired by the human eye, these sensors operate on the principle of change detection and each pixel functions independently and asynchronously from the other pixels. Pixels trigger events when a change in light intensity occurs. The sensor records events as a sparse time series output with microsecond level of precision. The space sensing community is interested in this technology due to wide dynamic range achieved by the operating in the log scale, the minimal data produced for a relatively static scene where changes in intensity are infrequent, and the temporal precision that opens opportunities to capture information on fast moving space objects where traditional frame imaging is not an option. As a relatively inexpensive sensor with technical capabilities well suited for tracking, they could augment existing ground-based systems or be a primary sensor on-board a spacecraft. EVS are uniquely suited for space-based operations. With low size, weight, power, and data requirements, they easily fit into tight engineering budgets for space systems. The data may even be well suited for on-board processing due to its sparsity. Despite all these advantages, the sensors are not ready to implement into SDA operations. Creating algorithms to handle the time series data and optimizing the sensor for low-light imaging are areas of active research to improve the utility of these sensors as tools for SDA. To support these efforts, I develop physics-based end-to-end model for event-based sensing of resident space objects (RSOs). This model adapts previous synthetic event generation methods to operate with photon flux input and precise measures of current. By implementing a model of pixel readout with microsecond-level precision and developing methods to model noise based on dark and induced current levels, I improve the accuracy of the frequency and polarity of the events produced. This accuracy is necessary to extrapolate sensor performance from the model and to generate synthetic events to feed algorithmic development. I also contribute to event-based algorithms through development of an online non-frame based tracking algorithm. In order to validate the sensor model and train the classifying portions of my tracking algorithms, I develop batch-based clustering methods that leverage the temporal dimension which improves the labeling of events between star and noise by 31.8%. Through exploration of different grouping and classifying methods for the tracking algorithm, I attain a maximum of 94.5% group agreement with the batch clustered data and a 97.6% true positive rate and 99.9% true negative rate when classifying satellites on a validation data set. Star classification performance is slightly lower at a 96.7% true positive rate and 96.5% true negative rate. The tracking algorithm's success on this one set of data suggests promising performance from these sensors in future SDA applications.
机译:基于事件的视觉传感器 (EVS) 为空间域感知 (SDA) 应用提供了独特的机会。受人眼的启发,这些传感器根据变化检测原理工作,每个像素都独立于其他像素异步运行。像素 在光强度发生变化时触发事件。传感器将事件记录为具有微秒级精度的稀疏时间序列输出。空间传感界对这项技术很感兴趣,因为在对数尺度下操作实现了宽动态范围,为强度变化不频繁的相对静态场景产生的数据最少,以及时间精度为捕获快速移动空间物体的信息提供了机会,而传统帧成像不是一种选择。作为一种相对便宜的传感器,具有非常适合跟踪的技术能力,它们可以增强现有的地面系统或成为航天器上的主要传感器。EVS 特别适合天基操作。由于尺寸、重量、功耗和数据要求低,它们很容易适应空间系统紧张的工程预算。由于其稀疏性,数据甚至可能非常适合板载处理。尽管具有所有这些优势,但传感器尚未准备好在 SDA 操作中实施。创建算法来处理时间序列数据并优化传感器以进行低光成像是积极研究的领域,以提高这些传感器作为 SDA 工具的实用性。为了支持这些工作,我开发了基于物理的端到端模型,用于对常驻空间对象 (RSO) 进行基于事件的传感。该模型采用了以前的合成事件生成方法,以使用光子通量输入和精确的电流测量进行操作。通过实现具有微秒级精度的像素读出模型,并开发基于暗电流和感应电流水平对噪声进行建模的方法,我提高了所产生事件的频率和极性的准确性。这种准确性对于从模型推断传感器性能并生成合成事件以为算法开发提供动力是必要的。我还通过开发在线非基于帧的跟踪算法为基于事件的算法做出贡献。为了验证传感器模型并训练跟踪算法的分类部分,我开发了基于批处理的聚类方法,该方法利用时间维度将星形和噪声之间的事件标记提高了 31.8%。通过探索跟踪算法的不同分组和分类方法,我在批处理聚类数据中获得了最高 94.5% 的组一致性,并且在验证数据集上对卫星进行分类时获得了 97.6% 的真阳性率和 99.9% 的真阴性率。星形分类性能略低,真阳性率为 96.7%,真阴性率为 96.5%。跟踪算法在这组数据上的成功表明,这些传感器在未来的 SDA 应用中具有很好的性能。

著录项

  • 作者

    Oliver, Rachel.;

  • 作者单位

    Cornell University.;

    Cornell University.;

    Cornell University.;

  • 授予单位 Cornell University.;Cornell University.;Cornell University.;
  • 学科 Aerospace engineering.;Mechanical engineering.;Astronomy.
  • 学位
  • 年度 2024
  • 页码 385
  • 总页数 385
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Aerospace engineering.; Mechanical engineering.; Astronomy.;

    机译:航空航天工程。;机械工程。;天文学。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号