首页> 外文学位 >Analysis of the Physical Properties and Photoelectrochemical Behavior of c-Si/a-SiC:H(p) Photocathodes for Solar Water Splitting
【24h】

Analysis of the Physical Properties and Photoelectrochemical Behavior of c-Si/a-SiC:H(p) Photocathodes for Solar Water Splitting

机译:用于太阳能水分解的 c-Si/a-SiC:H(p) 光阴极面的物理性能和光电化学行为分析

获取原文
获取原文并翻译 | 示例

摘要

Photoelectrochemical (PEC) processes have become an efficient and viable method for solar energy conversion into zero-emission fuels by harnessing and storage the power of the sun, which offers an environment-friendly approach. Hydrogen is considered as a sustainable and suitable energy alternative in comparison to energy systems based on the consumption of conventional hydrocarbon fuels. In particular, hydrogen production by PEC water splitting represents an attractive alternative to enhance the efficiency of water splitting process using sun light. Current research in this field is devoted to the fabrication and evaluation of new photoactive materials that upon sunlight absorption enable water-splitting PEC reactions with high efficiency and durability.Silicon based compounds offer a good opportunity as photoactive material due to its high abundance and current scalable technologies. Silicon is the eighth most abundant element in the universe and constitutes up to 27.2% of the earth's crust weight [1]. Particularly, hydrogenated amorphous silicon carbide (a-SiC:H) thin films have been tested as photocathode material for photo-assisted electrolysis, exhibiting solar to hydrogen conversion efficiencies up to 7.5 %. Due to the capability to tailor the bandgap (1.8 - 3.3 eV) by the incorporation of carbon in a-Si:H, this material has turned out to be a promising candidate for PEC cells, fulfilling the optical bandgap (Egap) primary requirement, i.e. Egap > 2.2 eV. Additionally, the carbon incorporation leads to an enhancement of the corrosion resistance properties in aqueous media. It has been theoretically estimated that a PEC device with an a-Si0.9C0.1:H absorption layer exhibiting 2.0 eV of energy bandgap, can generate a photocurrent density Jph of 15 mA/cm2 (solar-to-hydrogen conversion efficiency ~18 %) when submitted to an Air mass (AM) 1.5 solar spectrum [2]. The specific value of 1.5 for the Air mass is selected for standardization purposes, based on the analysis of solar irradiance data in the United States, and corresponds to a power of 1000 W/cm2 [3]. In the present work, a similar material a-Si0.5C0.5:H exhibiting 2.76 eV of energy bandgap generates a Jph of 17 mA/cm2 when submitted to the same light spectrum. This reflects an improvement in the use of a-SiC:H in PEC water splitting. Research on single thin film photoactive materials does not typically consider the role of the silicon substrate in the photoelectrochemical performance. In this sense, the photoelectrode is a system formed by a p-p, n-n or n-p structure, which depending on the depth of the space charge region may have an important impact on the photoelectrode performance. In this work, this substrate effect has been considered and studied.PEC performance of a-SiC:H is often limited by its non-ideal energy band-edge alignment to the H2O/O2 redox potential, thus limiting the oxygen evolution reaction (OER) and the whole water splitting process [4]. To overcome this downside, an external bias needs to be applied, contributing to counteract the overpotential required to trigger the direct water splitting reaction. The external bias also contributes to reduce overpotentials due to the presence of a surface SiO2 barrier layer and compensates interface charge carriers recombination as well.
机译:光电化学 (PEC) 工艺通过利用和储存太阳能,成为一种将太阳能转化为零排放燃料的高效且可行的方法,这是一种环保的方法。与基于消耗传统碳氢化合物燃料的能源系统相比,氢气被认为是一种可持续且合适的能源替代品。特别是,通过 PEC 水分解制氢是一种有吸引力的替代方案,可以提高利用太阳光分解水过程的效率。该领域的当前研究致力于制造和评估新的光活性材料,这些材料在吸收阳光时能够高效和耐用地发生水分解 PEC 反应。硅基化合物由于其高丰度和当前可扩展的技术,为作为光活性材料提供了很好的机会。硅是宇宙中第八丰富的元素,占地壳重量的 27.2% [1]。特别是,氢化非晶碳化硅 (a-SiC:H) 薄膜已被测试为光辅助电解的光阴极面材料,表现出高达 7.5% 的太阳能到氢的转换效率。由于能够在 a-Si:H 中掺入碳来定制带隙 (1.8 - 3.3 eV),因此该材料已被证明是 PEC 电池的有前途的候选材料,满足光学带隙 (Egap) 的主要要求,即 Egap > 2.2 eV。此外,碳掺入可增强水性介质中的耐腐蚀性。据理论估计,具有 a-Si0.9C0.1:H 吸收层的 PEC 器件具有 2.0 eV 的能量带隙,当提交到空气质量 (AM) 1.5 太阳光谱时,可以产生 15 mA/cm2 的光电流密度 Jph(太阳能到氢的转换效率 ~18 %)[2]。根据对美国太阳辐照度数据的分析,出于标准化目的,选择了空气质量的具体值 1.5,对应于 1000 W/cm2 的功率 [3]。在本工作中,具有 2.76 eV 能量带隙的类似材料 a-Si0.5C0.5:H 在相同的光谱下产生 17 mA/cm2 的 Jph。这反映了 a-SiC:H 在 PEC 水分解中的使用有所改进。对单薄膜光活性材料的研究通常不考虑硅衬底在光电化学性能中的作用。从这个意义上说,光电电极是由 p-p、n-n 或 n-p 结构形成的系统,这取决于空间电荷区的深度,可能会对光电电极性能产生重要影响。在这项工作中,已经考虑和研究了这种基材效应。a-SiC:H 的 PEC 性能通常受到其与 H2O/O2 氧化还原电位的非理想能带边缘对齐的限制,从而限制了析氧反应 (OER) 和整个水分解过程 [4]。为了克服这一缺点,需要应用外部偏压,以抵消触发直接水分解反应所需的过电位。由于表面 SiO2 势垒层的存在,外部偏置还有助于减少过电位,并补偿界面电荷载流子复合。

著录项

  • 作者单位

    Pontificia Universidad Catolica del Peru (Peru).;

    Pontificia Universidad Catolica del Peru (Peru).;

    Pontificia Universidad Catolica del Peru (Peru).;

  • 授予单位 Pontificia Universidad Catolica del Peru (Peru).;Pontificia Universidad Catolica del Peru (Peru).;Pontificia Universidad Catolica del Peru (Peru).;
  • 学科 Electrolytes.;Electrodes.;Spectrum analysis.;Semiconductors.;Carbon.;Hydrogen.;Photovoltaic cells.
  • 学位
  • 年度 2023
  • 页码 105
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electrolytes.; Electrodes.; Spectrum analysis.; Semiconductors.; Carbon.; Hydrogen.; Photovoltaic cells.;

    机译:电解质。;电极。;频谱分析。;半导体。;碳。;氢。;光伏电池。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号