首页> 外文学位 >Techniques to Secure HW/SW-programmable SoC Architectures for Edge Computing =Sicherheitstechniken für die Datenverarbeitung an der Edge Auf HW/SW-Programmierbaren Soc-Architekturen
【24h】

Techniques to Secure HW/SW-programmable SoC Architectures for Edge Computing =Sicherheitstechniken für die Datenverarbeitung an der Edge Auf HW/SW-Programmierbaren Soc-Architekturen

机译:用于边缘计算的硬件/软件可编程 SoC 架构的安全技术 = 硬件/软件可编程 SoC 架构上边缘数据处理的安全技术

获取原文
获取原文并翻译 | 示例

摘要

In order to avoid network congestion, a clear trend towards processing and analyzing an increasing amount of data at the edge of the network can be observed. Consequently, compute- and thus resource-intensive processing tasks move closer to the data source, e.g., near to the sensors. At the same time, however, the sheer number of sensors producing a huge amount of data that has to be processed in real-time raises the question of suitable compute architectures. As a result, dedicated edge platforms capable of performing such data-intensive and time-critical tasks at the edge of the network are gaining more and more interest and visibility. This work adheres to this trend yet advocates Field Programmable Gate Array (FPGA)-based System-on-Chips (SoCs), and thus both hardware- and software-programmable architectures, as ideal compute platforms to acquire and process large amounts of data right at the edge.However, when it comes to protecting edge computing and sensitive data from potential attacks against such platforms, security must play an important role. Particularly as FPGA-based edge platforms open up attack vectors not found on traditional computing devices, due to the tight integration of programmable hardware and software components. For example, an attacker with physical access to non-volatile memory could manipulate the loading of an initial FPGA configuration, which could negatively affect the entire system. Moreover, permanent SoC memory is at risk of being attacked to obtain, e.g., cryptographic keys. Such undermining of the integrity respective confidentiality of the keys poses the most significant risk, as often the security of the entire system is based on these keys. To protect FPGA devices from the threat of key-theft and manipulation, so-called Physical Unclonable Functions (PUFs) have evolved as a promising solution for permanent key storage by converting natural transistor variations into unique, FPGA-intrinsic secrets.This thesis investigates techniques to secure FPGA-based SoC devices at the edge against different security threats. As a first contribution, a novel digitally-tunable PUF design is presented that provides an alternative to insecure permanent key storage in an untrusted environment. Thereby, addressable shift registers available within the FPGA are used for the first time to generate PUF responses by adjustable signal propagation delays. It is demonstrated that these free-configurable propagation delays can be used to adjust a given PUF circuit to achieve better uniqueness and reliability propertieswithout sacrificing the PUF's unpredictability and unclonability characteristics. To this end, completely novel analyses and evaluations of the effects of temperature variation and stability are performed to investigate the impact of extreme temperatures on the robustness of the PUF. As a result, the proposed approach achieves significantly better results in uniqueness, reliability, and robustness than existing static PUF designs for FPGAs. Moreover, it is shown that this enables device-specific PUF configurations, which results in savings in error correction times and memory resources for cryptographic key generation.As a second contribution, the PUF-based key generation scheme is extended to an innovative approach for secure data communication with non-volatile memory devices. Here, the reconfigurable logic of the FPGA serves as a hardware-based root of trust for security-critical authentication and integrity checking of data transfers between SoC and memory. At power-on, a hardware-protected security unit called Trusted MemoryInterface Unit (TMIU) with access to the non-volatile memory is loaded into the FPGA. Subsequently, after appropriate authentication of the memory device, the simultaneous decryption and verification of configuration data are performed, making it possible to securely boot the entire SoC. Thus, the TMIU enables for the first time to securely handle at scale FPGA-based SoC con
机译:为了避免网络拥塞,可以观察到在网络边缘处理和分析越来越多的数据的明显趋势。因此,计算和资源密集型处理任务更靠近数据源,例如,靠近传感器。然而,与此同时,大量传感器会产生必须实时处理的大量数据,这引发了合适的计算架构的问题。因此,能够在网络边缘执行此类数据密集型和时间关键型任务的专用边缘平台越来越受到关注和关注。这项工作顺应了这一趋势,但倡导基于现场可编程门阵列 (FPGA) 的系统级芯片 (SoC),因此硬件和软件可编程架构都是在边缘获取和处理大量数据的理想计算平台。但是,在保护边缘计算和敏感数据免受针对此类平台的潜在攻击时,安全性必须发挥重要作用。特别是由于可编程硬件和软件组件的紧密集成,基于 FPGA 的边缘平台打开了传统计算设备上没有的攻击媒介。例如,对非易失性存储器具有物理访问权限的攻击者可以操纵初始 FPGA 配置的加载,这可能会对整个系统产生负面影响。此外,永久 SoC 内存有被攻击以获取加密密钥等风险。这种对密钥完整性和机密性的破坏构成了最重大的风险,因为整个系统的安全性通常基于这些密钥。为了保护 FPGA 设备免受密钥盗窃和操纵的威胁,所谓的物理不可克隆函数 (PUF) 通过将自然晶体管变体转换为独特的 FPGA 内在秘密,已经发展成为一种很有前途的永久密钥存储解决方案。本论文研究了在边缘保护基于 FPGA 的 SoC 设备免受各种安全威胁的技术。作为第一个贡献,提出了一种新颖的数字可调 PUF 设计,它为不受信任的环境中不安全的永久密钥存储提供了一种替代方案。因此,FPGA 中可用的可寻址移位寄存器首次用于通过可调节的信号传播延迟生成 PUF 响应。结果表明,这些可自由配置的传播延迟可用于调整给定的 PUF 电路,以实现更好的唯一性和可靠性特性,而不会牺牲 PUF 的不可预测性和不可克隆性特性。为此,对温度变化和稳定性的影响进行了全新的分析和评估,以研究极端温度对 PUF 稳健性的影响。因此,与现有的 FPGA 静态 PUF 设计相比,所提出的方法在唯一性、可靠性和鲁棒性方面取得了明显更好的结果。此外,结果表明,这支持特定于设备的 PUF 配置,从而节省纠错时间和用于加密密钥生成的内存资源。作为第二个贡献,基于 PUF 的密钥生成方案扩展到一种与非易失性存储设备进行安全数据通信的创新方法。在这里, FPGA 的 reconfigurable logic 用作基于硬件的信任根,用于 SoC 和 memory 之间数据传输的安全关键身份验证和完整性检查。上电时,一个名为 Trusted MemoryInterface Unit (TMIU) 的硬件保护安全单元被加载到 FPGA中,可以访问非易失性存储器。随后,在对存储设备进行适当的身份验证后,同时执行配置数据的解密和验证,从而可以安全地启动整个 SoC。因此,TMIU 首次能够安全地大规模处理基于 FPGA 的 SoC 控制

著录项

  • 作者

    Streit, Franz-Josef.;

  • 作者单位

    Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany).;

    Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany).;

    Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany).;

  • 授予单位 Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany).;Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany).;Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany).;
  • 学科 Cryptography.;Authenticity.;Software upgrading.;Digital signal processors.
  • 学位
  • 年度 2023
  • 页码 161
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cryptography.; Authenticity.; Software upgrading.; Digital signal processors.;

    机译:密码学。;真实性。;软件升级。;数字信号处理器。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号