首页> 外文学位 >Scenario-Based Drive Cycle Analysis Framework for Zero Emission Vehicles with Cooperative Driving Automation
【24h】

Scenario-Based Drive Cycle Analysis Framework for Zero Emission Vehicles with Cooperative Driving Automation

机译:基于场景的零排放车辆协同驾驶自动化驾驶循环分析框架

获取原文
获取原文并翻译 | 示例

摘要

The next evolution of vehicle mobility is anticipated to include, along with zero-emission vehicles (ZEVs), the introduction of cooperative driving automation (CDA) encompassing both autonomous vehicles (AV) and connected infrastructure. CDA offers enhanced comfort and safety for the passengers and, potentially, an improvement in fuel economy. For example, on urban roadways, communication to the vehicle from smart traffic signals can adjust and smooth vehicle speed and reduce fuel use. Additionally, communication between vehicles allows for group coordination that can improve aerodynamics and reduce fuel consumption. This thesis explores the role of the vehicle drivetrain in responding to CDA communication. With the growing population of zero-emission battery electric vehicles (BEV) and hydrogen fuel cell electric vehicles (FCEV), the focus of the thesis is directed to electric drivetrains with the goal to project the fuel savings from connected and autonomous mobility. The results reveal that the addition of CDA to ZEVs result in an increase in city fuel economy of 6% to 12% with a infrastructure to vehicle connectivity range not exceeding 250 meters to 450 meters respectively. As the connectivity range increases above 350 meters, the fuel efficiency gains diminish. The addition of CDA increases highway fuel economy by 6% to 32% due to reduced drag from vehicle platoons. Future vehicle technology improvements that increase the efficiency of individual powertrain components are found to decrease the amount of fuel economy improvements when adding CDA. Resulting fuel economy improvements from equipping vehicles with CDA are projected to reduce the fuel cost to consumers by 6%.
机译:预计车辆移动出行的下一步发展将包括与零排放汽车 (ZEV) 一起引入包括自动驾驶汽车 (AV) 和互联基础设施的协同驾驶自动化 (CDA)。CDA 为乘客提供了更高的舒适性和安全性,并有可能提高燃油经济性。例如,在城市道路上,通过智能交通信号灯与车辆进行通信可以调整和平稳车速并减少燃料使用。此外,车辆之间的通信允许团队协调,从而改善空气动力学并降低油耗。本论文探讨了车辆传动系统在响应 CDA 通信中的作用。随着零排放电池电动汽车 (BEV) 和氢燃料电池电动汽车 (FCEV) 数量的增长,本论文的重点转向电动传动系统,目标是预测互联和自动驾驶出行的燃料节省。结果表明,在 ZEV 中添加 CDA 可使城市燃油经济性提高 6% 至 12%,基础设施与车辆的连接范围分别不超过 250 米至 450 米。当连接范围增加到 350 米以上时,燃油效率的提高会降低。由于减少了车辆列队行驶的阻力,CDA 的添加将高速公路燃油经济性提高了 6% 至 32%。发现,在添加 CDA 时,提高单个动力总成组件效率的未来车辆技术改进会减少燃油经济性的改进量。为车辆配备 CDA 带来的燃油经济性改善预计将使消费者的燃料成本降低 6%。

著录项

  • 作者

    Fong, Eric.;

  • 作者单位

    University of California, Irvine.;

    University of California, Irvine.;

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;University of California, Irvine.;University of California, Irvine.;
  • 学科 Mechanical engineering.;Energy.;Automotive engineering.;Transportation.
  • 学位
  • 年度 2023
  • 页码 103
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mechanical engineering.; Energy.; Automotive engineering.; Transportation.;

    机译:机械工程。;能源。;汽车工程。;运输。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号