首页> 外文学位 >Weak Measurement: Applications to Quantum Computing and Parameter Estimation
【24h】

Weak Measurement: Applications to Quantum Computing and Parameter Estimation

机译:弱测量:在量子计算和参数估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

This dissertation covers several projects making use of weak quantum measurement. Measuring a property of a quantum system is an invasive process that disturbs the system, so our knowledge of the system is inherently limited. When the strength of the measurement decreases, there is less disturbance to the system, but less information is gained; this tradeoff is a theme throughout the work presented here. The first three projects presented here cover applications of quantum trajectories, where by making many sequential weak measurements, it is possible to obtain a stochastic record of the system evolving over time. The final project is a proposal for an integrated device using weak value amplification to sensitively measure optical frequency.First, we propose using quantum trajectories to reconstruct an unknown time-dependent Hamiltonian. Existing techniques either rely on projective measurements of the system before and after coherent time evolution and do not explicitly reconstruct the full time-dependent Hamiltonian or interrupt evolution for tomography. In contrast to previous work, our technique does not require interruptions, which would distort the recovered Hamiltonian. We introduce a novel algorithm which recovers the Hamiltonian and density matrix from an incomplete set of continuous measurements and demonstrate that it reliably extracts amplitudes of a variety of single-qubit and entangling two-qubit Hamiltonians.Next, we analyze the continuous monitoring of a many-level extension of a qubit, called a qudit, coupled to a cavity and read out using both phase-preserving and phase-sensitive amplification. The quantum trajectories of the system are described by a stochastic master equation, for which we derive the appropriate Lindblad operators. The measurement back-action causes spiraling in the state coordinates during collapse, which increases as the system levels become less distinguishable. We discuss two examples: a two-level system, and a $d$-dimensional system and meter with rotational symmetry in the quadrature space. We also provide a comparison of the effects of phase-preserving and phase-sensitive detection on the master equation and show that the average behavior is the same in both cases, but individual trajectories collapse at different rates depending on the measurement axis in the quadrature plane.Third, we demonstrate that continuously monitored quantum dynamics can be chaotic. The optimal paths between past and future boundary conditions can diverge exponentially in time when there is time-dependent evolution and continuous weak monitoring. We investigate the onset of chaos in pure-state qubit systems with optimal paths generated by a periodic Hamiltonian. Specifically, chaotic quantum dynamics are demonstrated in a scheme where two non-commuting observables of a qubit are continuously monitored, and one measurement strength is periodically modulated.Finally, we present an integrated design to sensitively measure changes in optical frequency using weak value amplification with a multi-mode interferometer. The technique involves introducing a weak perturbation to the system and then post-selecting the data in such a way that the signal is amplified without amplifying the technical noise, as has previously been demonstrated in a free-space setup. We demonstrate the advantages of a Bragg grating with two band gaps for obtaining simultaneous, stable high transmission and high dispersion. The device is more robust and easily scalable than the free-space implementation, and provides amplified sensitivity compared to other methods of measuring changes in optical frequency on a chip, such as an integrated Mach-Zehnder interferometer.
机译:本论文涵盖了几个利用弱量子测量的项目。测量量子系统的特性是一个干扰系统的侵入性过程,因此我们对系统的了解本质上是有限的。当测量强度降低时,对系统的干扰较小,但获得的信息较少;这种权衡是贯穿此处作品的主题。这里介绍的前三个项目涵盖了量子轨迹的应用,通过进行许多连续的弱测量,可以获得系统随时间演变的随机记录。最后一个项目是提出一种使用弱值放大来灵敏测量光频率的集成设备。首先,我们建议使用量子轨迹来重建一个未知的瞬态哈密顿量。现有技术要么依赖于相干时间演化前后系统的投影测量,要么没有明确重建完整的瞬态哈密顿量或中断断层扫描演化。与以前的工作相比,我们的技术不需要中断,否则会扭曲恢复的哈密顿量。我们引入了一种新颖的算法,该算法可以从一组不完整的连续测量中恢复哈密顿量和密度矩阵,并证明它能够可靠地提取各种单量子比特和纠缠双量子比特哈密顿量的振幅。接下来,我们分析了量子比特的多级扩展(称为 qudit)的连续监测,该扩展耦合到腔中,并使用保相和相位敏感放大进行读出。该系统的量子轨迹由随机主方程描述,为此我们推导出了适当的 Lindblad 算子。测量反向作用会导致 state 坐标在 collapse 期间呈螺旋状,随着系统级别变得难以区分,螺旋形也会增加。我们讨论了两个例子:一个两级系统,以及一个 $d$ 维系统和在正交空间中具有旋转对称性的仪表。我们还比较了相位保持和相位敏感检测对主方程的影响,并表明两种情况下的平均行为相同,但根据正交平面中的测量轴,各个轨迹以不同的速率坍缩。第三,我们证明了连续监测的量子动力学可能是混乱的。当存在时间依赖性演变和持续的弱监控时,过去和未来边界条件之间的最佳路径可以在时间上呈指数级发散。我们研究了纯态量子比特系统中混沌的开始,其中包含由周期性哈密顿量生成的最佳路径。具体来说,混沌量子动力学在这样一个方案中得到了演示,其中连续监视量子比特的两个非交换可观察对象,并定期调制一个测量强度。最后,我们提出了一种集成设计,可以使用多模式干涉仪的弱值放大来灵敏地测量光频率的变化。该技术涉及向系统引入弱扰动,然后以这样一种方式对数据进行后选,以便在不放大技术噪声的情况下放大信号,就像之前在自由空间设置中演示的那样。我们展示了具有两个带隙的布拉格光栅在获得同时、稳定的高透射率和高色散方面的优势。与自由空间实现相比,该器件更坚固、更易于扩展,并且与测量芯片上光学频率变化的其他方法(如集成马赫-曾德尔干涉仪)相比,可提供更高的灵敏度。

著录项

  • 作者

    Steinmetz, John.;

  • 作者单位

    University of Rochester.;

    University of Rochester.;

    University of Rochester.;

  • 授予单位 University of Rochester.;University of Rochester.;University of Rochester.;
  • 学科 Physics.;Quantum physics.
  • 学位
  • 年度 2023
  • 页码 163
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Physics.; Quantum physics.;

    机译:物理学。;量子物理学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号