首页> 外文学位 >Reliable Autonomy at the Intersection of Constrained Motion Planning, Learning from Demonstration, and Augmented Reality
【24h】

Reliable Autonomy at the Intersection of Constrained Motion Planning, Learning from Demonstration, and Augmented Reality

机译:在约束运动规划、从演示中学习和增强现实的交叉点上实现可靠的自主性

获取原文
获取原文并翻译 | 示例

摘要

Historically, robot automation has targeted applications that require consistency, precision, and long-term repeatability. Tasks that are dynamic or require operation in close proximity to human users reveal traditional robot controllers to be inflexible, costly, and unsafe. In response, Robot Learning from Demonstration (LfD) methods enable users to teach robots through actions, forgoing the need for programming expertise and providing a mechanism for flexibility. However, one limitation of traditional LfD methods is that they often utilize limited or context-independent information modalities, such as robot configurations, that inhibit the capture of pertinent skill information. This thesis presents a set of algorithms and user interaction systems that focus on enabling human users to communicate additional information in the form of constraints to a robot learning system. This results in more robust, generalizable, and safe skill execution. It will outline how constraints based on abstract, high-level concepts can be integrated into existing LfD methods, how unique interfaces can further enhance the communication of such constraints, and how the grounding of these constraints requires novel constrained motion planning techniques.
机译:从历史上看,机器人自动化的目标应用需要一致性、精度和长期可重复性。动态任务或需要在靠近人类用户的地方操作的任务表明,传统的机器人控制器不灵活、成本高昂且不安全。作为回应,机器人从演示中学习 (LfD) 方法使用户能够通过操作来教机器人,无需编程专业知识,提供了一种灵活的机制。然而,传统 LfD 方法的一个局限性是它们通常使用有限或与上下文无关的信息模式,例如机器人配置,这会抑制相关技能信息的捕获。本论文提出了一组算法和用户交互系统,这些算法和交互系统专注于使人类用户能够以约束的形式将其他信息传达给机器人学习系统。这会产生更健壮、可推广且更安全的技能执行。它将概述如何将基于抽象、高级概念的约束集成到现有的 LfD 方法中,独特的接口如何进一步增强此类约束的通信,以及这些约束的基础如何需要新颖的约束运动规划技术。

著录项

  • 作者

    Mueller, C. L.;

  • 作者单位

    University of Colorado at Boulder.;

    University of Colorado at Boulder.;

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;University of Colorado at Boulder.;University of Colorado at Boulder.;
  • 学科 Robotics.;Electrical engineering.;Mechanical engineering.
  • 学位
  • 年度 2023
  • 页码 136
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Robotics.; Electrical engineering.; Mechanical engineering.;

    机译:机器人技术;电气工程。;机械工程。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号