首页> 外文学位 >Learned FFT Windowing for Device Classification from Unintended Conducted Emissions Data
【24h】

Learned FFT Windowing for Device Classification from Unintended Conducted Emissions Data

机译:从意外传导发射数据中学习器件分类的 FFT 窗口

获取原文
获取原文并翻译 | 示例

摘要

Characterization of Unintended Conducted Emissions (UCE) from electronic devices is important when diagnosing electromagnetic interference, performing nonintrusive load monitoring (NILM) of power systems, and monitoring electronic device health, among other applications. Prior work has demonstrated that UCE analysis can serve as a diagnostic tool for these goals. UCE collections from 18 commercial devices were augmented with high levels of additive white Gaussian noise and used for proof of concept and analytic experimentation with the proposed technique. This dissertation describes a novel means of using deep neural networks (DNN) for the classification of low power electronic devices from UCE data. The author has conceived of a novel means of automatically generating a fast Fourier transform (FFT) window function that is shown by this work to have the ability to explain aspects of what the DNN classifier (ResNet) sees concerning the features and noise in the data set (important in unintended emission types of applications). The method back-propagates the classification loss/error through the network and the FFT, which is embedded in the network as a "fixed" layer, to arrive at a window function that is appropriate for the data set and classifier. This method can be used partially for explainability of the classifier, as the window is a mathematical function that can be analyzed using signal processing theory as a guide to determine general characteristics of spectral features and noise. This method produced on average a 1.79% better performing FFT window across five different types of initial window functions.
机译:在诊断电磁干扰、对电力系统执行非侵入式负载监测 (NILM) 以及监测电子设备健康状况等应用中,表征电子设备的意外传导发射 (UCE) 非常重要。先前的研究表明,UCE 分析可以作为实现这些目标的诊断工具。来自 18 个商业设备的 UCE 集合通过高水平的加性白高斯噪声进行了增强,并用于所提出技术的概念验证和分析实验。本论文描述了一种使用深度神经网络 (DNN) 从 UCE 数据中对低功耗电子设备进行分类的新方法。作者构思了一种自动生成快速傅里叶变换 (FFT) 窗口函数的新方法,这项工作表明该方法能够解释 DNN 分类器 (ResNet) 看到的有关数据集中特征和噪声的各个方面(在意外发射类型的应用程序中很重要)。该方法通过网络和 FFT 反向传播分类损失/误差,FFT 作为 “固定” 层嵌入在网络中,以达到适合数据集和分类器的窗口函数。这种方法可以部分用于分类器的可解释性,因为窗口是一个数学函数,可以使用信号处理理论作为指南进行分析,以确定频谱特征和噪声的一般特征。这种方法在五种不同类型的初始窗口函数中产生的 FFT 窗口性能平均提高了 1.79%。

著录项

  • 作者

    Sheets, Gregory.;

  • 作者单位

    Tennessee Technological University.;

    Tennessee Technological University.;

    Tennessee Technological University.;

  • 授予单位 Tennessee Technological University.;Tennessee Technological University.;Tennessee Technological University.;
  • 学科 Electrical engineering.;Electromagnetics.;Applied mathematics.;Computer science.
  • 学位
  • 年度 2023
  • 页码 110
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electrical engineering.; Electromagnetics.; Applied mathematics.; Computer science.;

    机译:电气工程。;电磁学。;应用数学。;计算机科学。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号