首页> 外文学位 >Unmanned Aerial Vehicle Object Recognition in Bad Weather Using Dark Channel Prior and Convolutional Neural Networks
【24h】

Unmanned Aerial Vehicle Object Recognition in Bad Weather Using Dark Channel Prior and Convolutional Neural Networks

机译:基于暗通道先验和卷积神经网络的恶劣天气下无人机目标识别

获取原文
获取原文并翻译 | 示例

摘要

Object recognition using Unmanned Aerial Vehicles (UAVs) is increasingly becoming more useful. Tremendous success has been achieved on UAV object recognition in clear weather conditions where adequate illumination makes it easier for UAVs to recognize objects in the scene. Unfortunately, for outdoor applications, there is no escape from bad weather moments such as haze, fog, dust, smoke and smog. These weather nuisances occur due to suspended particles in the atmosphere, ultimately resulting in degraded visibility. Thus, these weather nuisances cause unsatisfactory performance in UAV object recognition. Current UAV object recognition algorithms do not guarantee satisfactory performance in bad weather conditions. Therefore, this study was motivated by the need for UAV object recognition systems that can perform robustly despite the state of the weather. Several state-of-the-art methods exist for object recognition and image dehazing/defogging. Nonetheless, the performance of these methods is dependent on the scenarios where they are used. In this study, a novel method that deployed the Dark Channel Prior (DCP), for scene dehazing/defogging; and Convolutional Neural Network (CNN) for object recognition; was proposed and investigated in the context of UAV for object recognition in bad weather. The aim of the study was to investigate the proposed method for enabling the UAV to efficiently recognize objects in bad weather conditions such as fog, haze, smoke and smog. The proposed method was experimented to determine the extend at which it can enable the UAV recognize objects in fog/haze weather. The objective of the experiments was to investigate the performance of the proposed method for addressing UAV object recognition in bad weather by observing two independent variables, namely; (1) fog density, which is the measure of fog present in the scene and (2) distance of object from the UAV, in fog. Analysis of results demonstrated that the DCP method effectively addresses UAV visibility improvement in bad weather conditions. On varied densities of haze/fog, the DCP method enables the UAV to effectively dehaze/defog scenes and improve visibility of objects present in the scene. Additionally, analysis of results illustrated that the constructed CNN model can enable the UAV to accurately recognize objects from the dehazed/defogged scenes with a confidence accuracy of 94.3%.
机译:使用无人机 (UAV) 进行物体识别正变得越来越有用。在晴朗的天气条件下识别无人机物体方面取得了巨大成功,在这些条件下,充足的照明使无人机更容易识别场景中的物体。不幸的是,对于户外应用,无法逃避恶劣的天气时刻,如阴霾、雾、灰尘、烟雾和烟雾。这些天气滋扰是由于大气中的悬浮颗粒而发生的,最终导致能见度下降。因此,这些天气干扰会导致无人机物体识别的性能不令人满意。当前的无人机对象识别算法不能保证在恶劣天气条件下的性能令人满意。因此,这项研究的动机是对无人机物体识别系统的需求,该系统可以在天气状况下稳健运行。有几种最先进的方法可用于对象识别和图像去雾/去雾。尽管如此,这些方法的性能取决于使用它们的场景。在这项研究中,一种部署了 Dark Channel Prior (DCP) 的新方法,用于场景去雾/去雾;和用于对象识别的卷积神经网络 (CNN);是在无人机的背景下提出和研究的,用于恶劣天气下的物体识别。该研究的目的是研究所提出的方法,使无人机能够在雾、霾、烟雾和烟雾等恶劣天气条件下有效识别物体。对所提出的方法进行了实验,以确定它可以使无人机在雾/霾天气中识别物体的范围。实验的目的是通过观察两个自变量来研究所提出的方法在恶劣天气下解决无人机物体识别的性能,即;(1) 雾密度,这是场景中存在的雾的量度,以及 (2) 雾中物体与无人机的距离。结果分析表明,DCP 方法有效地解决了恶劣天气条件下无人机能见度的提高问题。在不同密度的雾霾/雾中,DCP 方法使无人机能够有效地对场景进行雾霾/除雾,并提高场景中存在的对象的可见性。此外,结果分析表明,构建的 CNN 模型可以使无人机以 94.3% 的置信准确识别去雾/去雾场景中的物体。

著录项

  • 作者

    Topias, Kaloso.;

  • 作者单位

    Botswana International University of Science & Technology (Botswana).;

    Botswana International University of Science & Technology (Botswana).;

    Botswana International University of Science & Technology (Botswana).;

  • 授予单位 Botswana International University of Science & Technology (Botswana).;Botswana International University of Science & Technology (Botswana).;Botswana International University of Science & Technology (Botswana).;
  • 学科 Computer science.
  • 学位
  • 年度 2021
  • 页码 170
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computer science.;

    机译:计算机科学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号