首页> 外文学位 >Leveraging Multi-Source Remote Sensing Images and Deep Learning to Map Caribou Lichens
【24h】

Leveraging Multi-Source Remote Sensing Images and Deep Learning to Map Caribou Lichens

机译:利用多源遥感影像和深度学习绘制驯鹿地衣地图

获取原文
获取原文并翻译 | 示例

摘要

Given the importance of lichens for caribou during winters, disturbances to caribou lichens may affect caribou migration and distribution patterns, and possibly lead to their population declines. Using remote sensing (RS) data, it is possible to monitor forage lichen cover efficiently over large and inaccessible areas. In this thesis, three significantly challenging problems in lichen cover mapping (especially Cladonia spp.) in different regions of Canada (Newfoundland and Labrador, Quebec, and Northwest Territory) are addressed: 1) lichen mapping using limited ground-validation data; 2) deploying a single, universal model for lichen mapping in non-atmospherically corrected RS images; and 3) lichen fractional cover mapping over rocky landscapes where non-lichen features are spectrally similar to caribou lichens. To address these three challenges, we used a wide variety of RS images (micro-plot images, high-resolution aerial optical images, high-resolution satellite (HRS) images (WorldView-2 and -3), and airborne hyperspectral imagery (AVIRIS-NG)), and different advanced deep learning (DL) models. In the first phase of this research, we found that semi-supervised DL for lichen mapping can improve lichen mapping compared to fully supervised learning in the presence of limited training data. In the second phase, our experiments showed the high potential of Generative Adversarial Networks (GANs) for normalizing non-atmospherically corrected HRS images for lichen mapping using a single, universal lichen detector model under different atmospheric conditions. In the last phase of this research, we found that using AVIRIS-NG hyperspectral imagery, lichen fractional cover mapping was more accurate than using HRS imagery over a rocky landscape where non-lichen bright features resembled lichen species of interest (Cladonia spp.). The studies conducted in this thesis are significant as they open new insights into how the use of state-of-the-art DL solutions and multiple sources of RS data can improve the quality of lichen mapping under different challenging circumstances. One of the most important contributions of this study is that all the methods and results presented in this thesis can also be readily applied to other vegetation mapping applications using RS data as the methods were designed in such a way that they do not depend on a specific land cover type or application.
机译:鉴于地衣在冬季对驯鹿的重要性,对驯鹿地衣的干扰可能会影响驯鹿的迁徙和分布模式,并可能导致其种群数量下降。使用遥感 (RS) 数据,可以有效地监测大片和难以进入区域的牧草地衣覆盖率。在这篇论文中,解决了加拿大不同地区(纽芬兰和拉布拉多、魁北克和西北地区)地衣覆盖测绘(尤其是 Cladonia spp.)中的三个极具挑战性的问题:1) 使用有限的地面验证数据进行地衣测绘;2)在非大气校正的RS图像中部署一个单一的通用模型,用于地衣映射;3)非地衣特征在光谱上与驯鹿地衣相似的岩石景观上的地衣部分覆盖图。为了应对这三个挑战,我们使用了各种 RS 图像(微绘图图像、高分辨率航空光学图像、高分辨率卫星 (HRS) 图像(WorldView-2 和 -3)和机载高光谱图像 (AVIRIS-NG))以及不同的高级深度学习 (DL) 模型。在这项研究的第一阶段,我们发现在训练数据有限的情况下,与完全监督学习相比,用于地衣映射的半监督深度学习可以改善地衣映射。在第二阶段,我们的实验表明,生成对抗网络(GAN)在不同大气条件下使用单一的通用地衣检测器模型对非大气校正的HRS图像进行归一化,以进行地衣映射的巨大潜力。在这项研究的最后阶段,我们发现使用 AVIRIS-NG 高光谱影像,地衣部分覆盖映射比在岩石景观上使用 HRS 影像更准确,其中非地衣明亮特征类似于感兴趣的地衣物种 (Cladonia spp.)。本论文中进行的研究意义重大,因为它们为使用最先进的深度学习解决方案和多种 RS 数据源如何在不同具有挑战性的情况下提高地衣映射的质量提供了新的见解。本研究最重要的贡献之一是,本论文中提出的所有方法和结果也可以很容易地应用于使用RS数据的其他植被制图应用,因为这些方法的设计方式不依赖于特定的土地覆盖类型或应用。

著录项

  • 作者

    Jozdani, Shahab;

  • 作者单位

    Queen's University (Canada);

    Queen's University (Canada);

    Queen's University (Canada);

  • 授予单位 Queen's University (Canada);Queen's University (Canada);Queen's University (Canada);
  • 学科 Climate Change;Artificial intelligence;Wildlife Conservation;Remote sensing;Aerospace engineering
  • 学位
  • 年度 2022
  • 页码 217
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Climate Change; Artificial intelligence; Wildlife Conservation; Remote sensing; Aerospace engineering;

    机译:气候变化;人工智能;野生动物保育;遥感;航空航天工程;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号