首页> 外文学位 >Evaluation of Motion-Synchronized Helical Tomotherapy Treatments for Intrafraction Respiratory Motion
【24h】

Evaluation of Motion-Synchronized Helical Tomotherapy Treatments for Intrafraction Respiratory Motion

机译:运动同步螺旋断层放疗治疗分次内呼吸运动的评估

获取原文
获取原文并翻译 | 示例

摘要

Intrafraction target motion during radiation therapy decreases the conformality and quality of the treatment. Methods to reduce the impact of intrafraction motion include passive techniques such as encompassing the motion and active techniques such as gating or real-time tracking. The Radixact linear accelerator is a helical tomotherapy (HT) device that contains an intrafraction motion management system, called Synchrony, which uses kilovoltage (kV) images to track the target motion, and jaw and multi-leaf collimator (MLC) movements to compensate for motion during delivery. At the start of this project, there were limited publications on this technology. The goal of this work was to investigate the ability of Radixact Synchrony to correct for intrafraction motion. This included analyzing the basic functions of Synchrony such as tracking and dosimetric delivery, and other aspects of the system such as dose deviations to organs risk (OARs) and patient dose from kV radiographs.Measurements and simulations were performed to investigate how beam characteristics change as the jaws sway and the MLC leaves shift. Due to the unflattened beam, jaw sway may decrease output by up to 3.6% and 1.7% for the 1.0 cm and 2.5 cm jaw settings, respectively. In addition, output can change by up to 2.6% for a shift of one MLC leaf and 5.1% for a shift of two MLC leaves, which correspond to shift magnitudes of 6.25 mm and 12.50 mm, respectively. However, unlike jaw sway which always decreases output, leaf shifts can increase or decrease output depending on the planned target location in the bore. Next, delivery quality assurance (DQA) measurements were performed using a Delta4 Phantom+ on a Hexamotion stage to investigate how synchronized plans with target motion compared to the static planned dose. Among 13 clinical HT treatment plans analyzed, all plans had gamma pass rates above the generally accepted action limit of 90% for standard IMRT QA criteria (3%, 2 mm, 10% threshold) and 11 of the 13 had pass rates greater than 99%. The effect of adding motion synchronization, as opposed to leaving the motion un-compensated, increased pass rates by 16.5% on average. This indicated that the motion synchronized plans deliver dose that is very similar to the planned dose.The ability of Synchrony to track target motion was investigated using measurements comparing known Delta4 phantom motion to Synchrony-modeled motion. Synchrony relies on a correlation between the patient's chest and the internal target motion. When the target/chest correlation was strong, root-mean square (RMS) tracking errors were less than 1.5 mm regardless of respiratory pattern, amplitude, or kV imaging period. However, larger errors (6 mm) were observed when changes to the target/chest correlation were introduced. The ability of the system to track these changes increased with more frequent imaging, suggesting that gantry periods should be kept short (20 s) for synchronized treatments. Next, a deformable dose accumulation framework was developed and used to calculate dose deviations to OARs from motion-synchronized treatments. Analysis was performed for five lung and five liver subjects by comparing the static planned dose to the doses calculated using the framework that included target motion, deformation, and motion of the jaws and MLC. Dose deviations from the static plan away from the target reached up to 19 Gy for one subject, and deviations of at least 6 Gy were observed for all 10 subjects. Several examples were presented in which the dose deviations may change the deliverability of a plan with respect to critical OAR dose constraints and ultimately sway clinical decisions. These calculations are important for tracking systems like Synchrony that only consider the location changes of the target and not OARs. Lastly, the patient dose and fiducial visibility on kV radiographs was explored. Patient dose was calculated by first measuring point doses in water and then creating a
机译:放射治疗期间的分次内目标运动会降低治疗的保形性和质量。减少分次内运动影响的方法包括被动技术(如包含运动)和主动技术(如门控或实时跟踪)。Radixact 直线加速器是一种螺旋断层扫描 (HT) 设备,其中包含一个名为 Synchrony 的分次内运动管理系统,该系统使用千伏 (kV) 图像来跟踪目标运动,并使用颚和多叶准直器 (MLC) 运动来补偿输送过程中的运动。在这个项目开始时,关于这项技术的出版物有限。这项工作的目的是研究 Radixact Synchrony 校正分次内运动的能力。这包括分析 Synchrony 的基本功能,例如跟踪和剂量剂量递送,以及系统的其他方面,例如器官风险 (OAR) 的剂量偏差和 kV X 光片的患者剂量。进行了测量和模拟,以研究光束特性如何随着钳口的摆动和MLC叶片的移动而变化。由于光束未扁平化,对于 1.0 cm 和 2.5 cm 的钳口设置,钳口摇摆可能会分别降低高达 3.6% 和 1.7% 的输出。此外,对于一个 MLC 叶片的偏移,输出最多可以变化 2.6%,对于两个 MLC 叶片的偏移,输出最多可以变化 5.1%,分别对应于 6.25 mm 和 12.50 mm 的偏移幅度。然而,与总是降低产量的颚板摆动不同,叶片偏移可以增加或减少产量,具体取决于孔中计划的目标位置。接下来,在 Hexamotion 载物台上使用 Delta4 Phantom+ 进行递送质量保证 (DQA) 测量,以研究与静态计划剂量相比,计划与目标运动的同步程度。在分析的 13 个临床 HT 治疗计划中,所有计划的伽马通过率都高于标准 IMRT QA 标准(3%、2 mm、10% 阈值)的 90% 的公认行动限值,13 个计划中有 11 个的通过率大于 99%。与不补偿运动相比,增加运动同步的效果平均提高了 16.5%。这表明运动同步计划提供的剂量与计划剂量非常相似。使用将已知的 Delta4 幻影运动与 Synchrony 建模的运动进行比较的测量来研究 Synchrony 跟踪目标运动的能力。同步依赖于患者胸部与内部目标运动之间的相关性。当靶/胸部相关性较强时,无论呼吸模式、振幅或 kV 成像周期如何,均方根 (RMS) 跟踪误差均小于 1.5 mm。然而,当引入目标/胸部相关性的变化时,观察到更大的误差(6 mm)。随着成像频率的提高,系统跟踪这些变化的能力也随之提高,这表明同步治疗的龙门架周期应保持较短(20 秒)。接下来,开发了一个可变形的剂量累积框架,用于计算运动同步治疗对 OAR 的剂量偏差。通过将静态计划剂量与使用包括目标运动、变形以及颌骨和 MLC 运动在内的框架计算的剂量进行比较,对 5 名肺和 5 名肝脏受试者进行了分析。对于一名受试者,偏离目标的静态计划的剂量偏差高达 19 Gy,并且所有 10 名受试者都观察到至少 6 Gy 的偏差。提出了几个例子,在这些例子中,剂量偏差可能会改变计划在关键OAR剂量限制方面的可交付性,并最终影响临床决策。这些计算对于像 Synchrony 这样的跟踪系统非常重要,这些系统只考虑目标的位置变化,而不考虑 OAR 的位置变化。最后,探索患者剂量和kV X光片上的基准可见度。通过首先测量水中的点剂量,然后创建

著录项

  • 作者

    Ferris, William S.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Medicine.;Physics.;Oncology.
  • 学位
  • 年度 2022
  • 页码 202
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Medicine.; Physics.; Oncology.;

    机译:医学。;物理。;肿瘤学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号