首页> 外文学位 >Data-Centric Models for Critical Maneuver Prediction Using Naturalistic Driving Dataset
【24h】

Data-Centric Models for Critical Maneuver Prediction Using Naturalistic Driving Dataset

机译:使用 Naturalistic Driving 数据集进行关键机动预测的以数据为中心的模型

获取原文
获取原文并翻译 | 示例

摘要

The last few years have seen a significant interest in driver behavior recognition. This is particularly true in the new era of advanced technologies, for instance connected and automated vehicles (CAVs) which are rapidly becoming a reality and have caught the attention of transportation researchers. During the transition period to 100 percent CAVs, CAVs and human-driven vehicles (HDVs) will have to co-exist and there will be various situations that may cause conflicts in the mixed traffic flow. It is important for CAVs to have the ability to identify and predict risky driving intention of non-CAV drivers in order to mitigate traffic collisions and enhance traffic safety.This dissertation aims at improving the current state-of-the-art (SOTA) methodology for predicting critical maneuvers. It uses a newly released naturalistic trajectory dataset recorded by unmanned aerial vehicles. In this dissertation, three sets of detection and prediction models are developed for forecasting multiclass lane changing, risky cutting-in, and critical brake events using long short-term memory (LSTM) deep neural networks. The focus of this dissertation is on the highway on/off ramp locations which generate highly dynamic interactions between adjacent vehicles which often lead to traffic conflicts. The detection and prediction models were trained for different values of prediction horizon time from 0.5 seconds to five seconds. It was found that the proposed approaches had an average accuracy of 97% with a small false alarm (<3%). Moreover, this dissertation adopted the Explainable Artificial Intelligence (XAI) concept with Shapley Additive Explanation (SHAP) feature importance method in order to address the lack of machine learning (ML) model interpretability. This approach also helped to explain the causality of critical maneuver behaviors.It is hypothesized that the methodology used in this dissertation can be used in combination with other comprehensive data fusion sources (e.g., weather conditions, highway conditions, driver socio-demographic, and physiological attributes) to improve the prediction accuracy and to lead to better safety of CAV and non-CAV in mixed traffic flow situations.
机译:过去几年,人们对驾驶员行为识别产生了浓厚的兴趣。在先进技术的新时代尤其如此,例如互联和自动驾驶汽车 (CAV),它们正在迅速成为现实,并引起了交通研究人员的注意。在向 100% CAV 过渡期间,CAV 和人类驾驶车辆 (HDV) 必须共存,并且会出现各种可能导致混合交通流发生冲突的情况。CAV 必须能够识别和预测非 CAV 驾驶员的危险驾驶意图,以减少交通碰撞并提高交通安全。本论文旨在改进当前用于预测关键机动的最新 (SOTA) 方法。它使用了由无人机记录的新发布的自然轨迹数据集。在本论文中,开发了三组检测和预测模型,用于使用长短期记忆 (LSTM) 深度神经网络预测多类变道、危险切入和关键制动事件。本论文的重点是高速公路上/下匝道位置,这些位置会在相邻车辆之间产生高度动态的交互,这通常会导致交通冲突。检测和预测模型针对从 0.5 秒到 5 秒的不同预测范围时间值进行训练。结果发现,所提出的方法的平均准确率为 97%,误报很小 (<3%)。此外,本论文采用了可解释人工智能 (XAI) 概念和 Shapley 加法解释 (SHAP) 特征重要性方法,以解决机器学习 (ML) 模型可解释性不足的问题。这种方法还有助于解释关键机动行为的因果关系。据推测,本论文中使用的方法可以与其他综合数据融合源(例如,天气条件、高速公路状况、驾驶员社会人口统计和生理属性)结合使用,以提高预测准确性,并在混合交通流情况下提高 CAV 和非 CAV 的安全性。

著录项

  • 作者

    Pham, Huong.;

  • 作者单位

    The University of Nebraska - Lincoln.;

    The University of Nebraska - Lincoln.;

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;The University of Nebraska - Lincoln.;The University of Nebraska - Lincoln.;
  • 学科 Transportation.;Civil engineering.
  • 学位
  • 年度 2022
  • 页码 261
  • 总页数 261
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Transportation.; Civil engineering.;

    机译:交通;土木工程。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号