首页> 外文学位 >Causes, Consequences, and Management of Tree Spatial Patterns in Fire-Frequent Forests
【24h】

Causes, Consequences, and Management of Tree Spatial Patterns in Fire-Frequent Forests

机译:火灾频发森林中树木空间格局的原因、后果和管理

获取原文
获取原文并翻译 | 示例

摘要

Increasingly, restoration treatments are being implemented to dually meet wildland fire hazard reduction alongside ecological objectives. Restoration treatments however deviate from conventional fuels treatments by emphasizing the re-creation of forest structure present prior to EuroAmerican settlement, notably the retention of single and grouped trees interspersed between canopy openings. As these historical forests persisted over cycles of fire returns, it is assumed that restoring these historical complex tree spatial patterns will, in turn, restore historical ecological processes. This includes more benign fire behavior that results in only partial tree mortality, allowing persistent and partial retention of forest cover over cycles of fire return. The qualitative description of historical forest structure, lacks, however, a clear process-based explanation detailing the interactions of heterogeneous forest structures and fire. While fires were historically frequent, it is unclear what role fire played in the genesis and maintenance of tree spatial patterns. If models of tree spatial dynamics can be improved and the interactions between tree spatial patterns and fire can be elucidated, forest managers will have an improved understanding of the implications of restoration-based fuels hazard reduction treatments both during fire-free periods and during fire events.The aims of this dissertation were to: 1) explore the causes of tree spatial patterns in dry fire-frequent forests; 2) investigate the consequences of tree spatial patterns on potential fire behavior and effects; 3) determine how alternate silvicultural strategies targeted at manipulation of tree spatial patterns can influence fire behavior and effects. In Chapter 2, I explored spatial patterns of tree regeneration over 44 years in absence of fire. In cooler periods, regeneration preferred clustering in openings, including openings following overstory mortality and away from overstory trees. Mortality risk of regeneration was heightened nearer overstory trees. In warmer periods, these trends reversed, likely because of a 'nurse effect' from the overstory. In anticipation of climate change, these results suggest silviculturists may benefit by capturing regeneration mortality in within openings while keeping regeneration near the overstory. In Chapter 3, I found that regenerating trees also form heterogeneous patterns following stand-replacing fires. In these sparse, early seral forests, all species were spatially aggregated, partly attributable to the influence of topography and beneficial interspecific attractions between ponderosa pine and other species. Results from this study suggest that scale-dependent, and often facilitatory, rather than competitive, processes act on regenerating trees. In Chapter 4, I studied the interaction between fire and tree spatial patterns, both historically and in modern forests. Tree mortality in the historical period was clustered and density-dependent because tree mortality was greater among small trees, which tended to be assembled in tightly spaced clusters. Tree mortality in the contemporary period was widespread, except for dispersed large trees, because most trees were a part of large, interconnected tree groups. Postfire tree patterns in the historical period, unlike the contemporary period, were within the historical range of variability found for the western United States. This divergence suggests that decades of forest dynamics without significant disturbances have altered the historical means of pyric pattern maintenance. In Chapter 5, I examined how fuels treatment designs with different manipulations of tree spatial patterns may influence treatment effectiveness. I simulated fires on hypothetical cuttings which manipulated the arrangement of crown fuels horizontally and vertically, either increasing the distance between tree crowns or not, and either removing small trees or not. All cutting methods reduced fire behavio
机译:越来越多的恢复处理正在实施,以双重满足减少野火危害和生态目标。然而,恢复处理与传统的燃料处理不同,它强调重建欧美定居之前存在的森林结构,特别是保留散布在树冠开口之间的单棵和群树。由于这些历史森林在火势回归的周期中持续存在,因此假设恢复这些历史复杂的树木空间模式将反过来恢复历史生态过程。这包括更良性的火灾行为,仅导致部分树木死亡,从而允许在火灾返回周期内持续和部分保留森林覆盖。然而,对历史森林结构的定性描述缺乏一个明确的基于过程的解释,详细说明了异质森林结构与火灾的相互作用。虽然火灾在历史上很常见,但尚不清楚火灾在树木空间模式的发生和维护中起了什么作用。如果可以改进树木空间动力学模型,并阐明树木空间模式与火灾之间的相互作用,那么森林管理者将更好地了解基于恢复的燃料减灾处理在无火期和火灾事件期间的影响。本论文的目的是:1) 探讨干燥火灾频繁森林中树木空间模式的原因;2) 研究树木空间模式对潜在火灾行为和影响的影响;3) 确定针对操纵树木空间模式的替代造林策略如何影响火灾行为和影响。在第 2 章中,我探讨了在没有火灾的情况下 44 年树木再生的空间模式。在较凉爽的时期,再生更喜欢聚集在空地上,包括在上层林下死亡率后和远离上层树木的空地。在靠近林上树木的地方,再生的死亡风险更高。在温暖的时期,这些趋势发生了逆转,这可能是由于上层的“护士效应”。在预测气候变化的情况下,这些结果表明,造林者可以通过捕获开口内的再生死亡率,同时将再生保持在上层林附近而受益。在第 3 章中,我发现再生树在林分更换火灾后也会形成异质模式。在这些稀疏的早期浆液林中,所有物种都在空间上聚集,部分归因于地形的影响和黄松与其他物种之间有益的种间吸引力。这项研究的结果表明,依赖于规模的、通常是促进性的而不是竞争性的过程作用于树木的再生。在第 4 章中,我研究了历史上和现代森林中火与树木空间模式之间的相互作用。历史时期的树木死亡率是聚集的并且与密度有关,因为小树的树木死亡率更高,而小树往往聚集在紧密间隔的集群中。除了分散的大树外,当代的树木死亡率很普遍,因为大多数树木都是大型、相互关联的树群的一部分。与当代不同,历史时期的火灾后树木模式位于美国西部的历史可变性范围内。这种分歧表明,几十年来没有重大干扰的森林动态改变了 pyric 模式维护的历史手段。在第 5 章中,我研究了通过不同树木空间模式操作的燃料处理设计如何影响处理效果。我模拟了假设插条上的火灾,这些插条操纵了树冠燃料的水平和垂直排列,要么增加树冠之间的距离,要么不移除小树。所有切割方法都减少了火势行为

著录项

  • 作者

    Ziegler, Justin Paul.;

  • 作者单位

    Colorado State University.;

    Colorado State University.;

    Colorado State University.;

  • 授予单位 Colorado State University.;Colorado State University.;Colorado State University.;
  • 学科 Forestry.;Environmental science.;Ecology.
  • 学位
  • 年度 2022
  • 页码 164
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Forestry.; Environmental science.; Ecology.;

    机译:林业。;环境科学。;生态学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号