首页> 外文学位 >Pricing Financial Derivatives with Continuous-Time Markov Chain and Ito-Taylor Expansion
【24h】

Pricing Financial Derivatives with Continuous-Time Markov Chain and Ito-Taylor Expansion

机译:具有连续时间马尔可夫链和Ito-Taylor展开的金融衍生品定价

获取原文
获取原文并翻译 | 示例

摘要

We propose and study two approaches for the pricing problem of three financial derivatives viz. Asian option, variance swap, and VIX option. In Chapter 1, we review recent research on these three types of financial products. In Chapter 2, we develop a Markov chain-based approximation method to price arithmetic Asian options for short maturities under the case of geometric Brownian motion. We demonstrate that this method achieves faster convergence and exhibits stability properties in hedging parameters. We also consider the pricing and hedging of floating-strike Asian options and fixed-strike in-progress Asian options and present that our method is as good as and sometimes better than existing approximation methods in the literature. In Chapter 3, we utilize Ito-Taylor expansion to solve the variance swap, which is based on discretely sampled variance formula under multi-dimensional stochastic volatility processes. We present numerical results to show that this approach is accurate with short maturities. In Chapter 4, we propose a novel analytical method to valuate VIX derivatives under the general class of stochastic volatility models, within which the current literature only considers a few special cases. The approach is based on a closed-form approximation of the VIX through the Ito-Taylor expansion and the continuous-time Markov chain (CTMC) approximation. The formula is in explicit closed-form and does not involve numerical inversions, in contrast to the existing literature. We test our method under several stochastic volatility models and demonstrate that it is accurate and efficient by comparing it with benchmarks in the literature and Monte Carlo simulations.
机译:针对三种金融衍生品的定价问题,提出并研究了两种方法,即:亚洲期权、方差掉期和VIX期权。在第1章中,我们回顾了最近对这三种金融产品的研究。在第 2 章中,我们开发了一种基于马尔可夫链的近似方法,用于在几何布朗运动的情况下对短期期限的算术亚洲期权进行定价。结果表明,该方法实现了更快的收敛,并在对冲参数中表现出稳定性。我们还考虑了浮动行权亚洲期权和固定行权价正在进行的亚洲期权的定价和对冲,并提出我们的方法与文献中现有的近似方法一样好,有时甚至更好。在第三章中,我们利用Ito-Taylor展开求解了基于多维随机波动率下离散采样方差公式的方差交换。我们给出的数值结果表明,这种方法在短期限内是准确的。在第4章中,我们提出了一种新的分析方法,用于在一般的随机波动率模型下评估VIX衍生品,其中目前的文献只考虑了少数特殊情况。该方法基于通过Ito-Taylor展开和连续时间马尔可夫链(CTMC)近似的VIX的闭合形式近似。与现有文献相比,该公式采用明确的封闭形式,不涉及数值反转。我们在几个随机波动率模型下测试了我们的方法,并通过将其与文献中的基准和蒙特卡罗模拟进行比较来证明它是准确和有效的。

著录项

  • 作者

    Liu, Mingzhe.;

  • 作者单位

    Stevens Institute of Technology.;

  • 授予单位 Stevens Institute of Technology.;
  • 学科 Mathematics.
  • 学位
  • 年度 2022
  • 页码 93
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mathematics.;

    机译:数学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号