首页> 外文学位 >Phase-Amplitude Coupling and Neuroglial Networks of the Brain: Big Role for a Small Cell
【24h】

Phase-Amplitude Coupling and Neuroglial Networks of the Brain: Big Role for a Small Cell

机译:大脑的相位-振幅耦合和神经胶质细胞网络:小细胞的重要作用

获取原文
获取原文并翻译 | 示例

摘要

Epilepsy affects over 45 million people worldwide and while treatment options exist, antiepileptic drugs don't work in up to 50% of the cases; furthermore, poorly-treated epilepsy may cause complications such as sudden unexpected death in epilepsy (SUDEP) and status epilepticus. Brain rhythms can characterize both normal and pathologic brain states and the coupling between these rhythms, namely between low frequency oscillations (LFOs, 30 Hz) and high frequency oscillations (HFOs, 30+ Hz), has been shown to be specific to particular phenomena in epilepsy. Thus, better understanding the nature of this cross-frequency coupling (CFC) can shed light on novel therapies and treatment options. The first half of this thesis shows the importance of CFC features in epileptic seizures. Specifically, a) features of both ictal and postictal state are consistently significantly different from baseline interictal state; b) CFC features can be used with a convolutional neural network to identify ictal and postictal substates; c) postictal CFC features when used with a hidden Markov model (HMM) classify postictal EEG suppression (PGES) state without relying on visual inspection; d) ictal CFC features are associated with the duration of PGES - a marker linked to the risk of SUDEP in patients; and e) CFC features can also be used on data from patients who died from SUDEP to differentiate those patients from the rest of the population of patients with epilepsy. To better understand potential mechanisms behind CFC generation, a series of computational models of neuroglial networks are discussed in the second half of this thesis. These models showed that a) astrocytic factors play an important role in hyperexcitability, leading to an increase in average duration of spontaneous electrographic discharge (SED) and emergence of CFC features similar to those seen in epileptic patients; b) microglial synaptic pruning increases inter-SED durations, while astrocytic manipulation led to increased SED durations; and c) glial effects modulate synaptic activity to achieve CFC feature variability seen in seizure episodes. Finally, the model is compared to other meso- and macro-level models, as well as to patient data - through HMM classification, gamma-fit of SED distributions, and beta-fit of ictal CFC variability.
机译:癫痫影响了全世界超过 4500 万人,虽然存在治疗选择,但抗癫痫药物在高达 50% 的病例中不起作用;此外,治疗不佳的癫痫可引起并发症,例如癫痫意外猝死 (SUDEP) 和癫痫持续状态。大脑节律可以表征正常和病理的大脑状态,这些节律之间的耦合,即低频振荡(LFO,<30 Hz)和高频振荡(HFO,30+ Hz)之间的耦合,已被证明是癫痫特定现象所特有的。因此,更好地了解这种交叉耦合 (CFC) 的性质可以阐明新的疗法和治疗方案。本论文的前半部分显示了 CFC 特征在癫痫发作中的重要性。具体来说,a) 发作期和发作后状态的特征始终与基线发作间期状态显著不同;b) CFC 特征可与卷积神经网络一起使用,以识别发作期和发作后亚状态;c) 发作后 CFC 特征与隐马尔可夫模型 (HMM) 一起使用时,无需依赖肉眼检查即可对发作后脑电图抑制 (PGES) 状态进行分类;d) 发作期 CFC 特征与 PGES 的持续时间相关 - PGES 的标志物与患者 SUDEP 的风险相关;e) CFC 特征也可用于死于 SUDEP 的患者的数据,以区分这些患者与其他癫痫患者群体。为了更好地理解 CFC 生成背后的潜在机制,本文的后半部分讨论了一系列神经胶质细胞网络的计算模型。这些模型表明,a) 星形胶质细胞因子在过度兴奋中起重要作用,导致自发电波放电 (SED) 的平均持续时间增加,并出现类似于癫痫患者所见的 CFC 特征;b) 小胶质细胞突触修剪增加了 SED 间持续时间,而星形胶质细胞操作导致 SED 持续时间增加;c) 神经胶质效应调节突触活动,以实现癫痫发作中观察到的 CFC 特征变异性。最后,通过 HMM 分类、SED 分布的 gamma 拟合和发作期 CFC 变异性的 beta 拟合,将该模型与其他中观和宏级别模型以及患者数据进行比较。

著录项

  • 作者

    Grigorovsky, Vasily.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Biomedical engineering.;Neurosciences.;Cellular biology.
  • 学位
  • 年度 2020
  • 页码 141
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biomedical engineering.; Neurosciences.; Cellular biology.;

    机译:生物医学工程。;神经科学。;细胞生物学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号