首页> 外文学位 >Automatic Identification and Quantification of Dense Microcracks in High-Performance Fiber Reinforced Cementitious Composite with Deep Learning-Based Computer Vision
【24h】

Automatic Identification and Quantification of Dense Microcracks in High-Performance Fiber Reinforced Cementitious Composite with Deep Learning-Based Computer Vision

机译:基于深度学习的计算机视觉自动识别和定量高性能纤维增强水泥基复合材料中致密的微裂纹

获取原文
获取原文并翻译 | 示例

摘要

High-performance fiber-reinforced cementitious composites (HPFRCC) feature high mechanical strengths, crack resistance, and durability. Under excessive loading, HPFRCC demonstrates unique dense microcracks which are difficult to identify. This study presents a computer vision method for identification and quantification of cracks in HPFRCC based on deep learning for the first time. The presented method seamlessly integrates capabilities of crack detection, localization, and quantification. The number of cracks and the width of each crack in a picture can be automatically determined using the method without human intervention. This study shows that the presented methods achieves an accuracy of 0.986 for crack detection and an accuracy finer than 50 μm (R2 > 0.984) for quantification of crack width, using 200 pictures of HPFRCC and 200 pictures of conventional concrete in the training dataset with incorporation of data augmentation technique. It is envisioned that this method is also applicable to other materials featuring complex cracks.
机译:高性能纤维增强水泥基复合材料 (HPFRCC) 具有高机械强度、抗裂性和耐用性。在过高负载下,HPFRCC 表现出难以识别的独特致密微裂纹。本研究首次提出了一种基于深度学习的计算机视觉方法,用于识别和量化 HPFRCC 中的裂缝。所提出的方法无缝集成了裂纹检测、定位和量化功能。可以使用该方法自动确定图片中裂缝的数量和每条裂缝的宽度,而无需人工干预。本研究表明,在训练数据集中使用 200 张 HPFRCC 图片和 200 张常规混凝土图片,结合数据增强技术,所提出的方法实现了 0.986 的裂缝检测精度和小于 50 μm (R2 > 0.984) 的裂缝宽度量化精度。可以设想,这种方法也适用于其他具有复杂裂纹的材料。

著录项

  • 作者

    Guo, Pengwei.;

  • 作者单位

    Stevens Institute of Technology.;

    Stevens Institute of Technology.;

    Stevens Institute of Technology.;

  • 授予单位 Stevens Institute of Technology.;Stevens Institute of Technology.;Stevens Institute of Technology.;
  • 学科 Civil engineering.;Mechanical engineering.
  • 学位
  • 年度 2020
  • 页码 47
  • 总页数 47
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Civil engineering.; Mechanical engineering.;

    机译:土木工程。;机械工程。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号