首页> 外文学位 >Additive Manufacturing (Potting) of Fiber-Reinforced Thermoset Sandwich Composite Structures: Fabrication, Numerical Simulation, and Structural Optimization
【24h】

Additive Manufacturing (Potting) of Fiber-Reinforced Thermoset Sandwich Composite Structures: Fabrication, Numerical Simulation, and Structural Optimization

机译:纤维增强热固性夹层复合材料结构的增材制造(灌封):制造、数值模拟和结构优化

获取原文
获取原文并翻译 | 示例

摘要

Sandwich composite structures are a distinct category of laminated composite materials with extensive applications in the aeronautical, civil, marine, and automotive industries. A sandwich structure constitutes a set of two stiff external face skins bonded to a thick central core of low density. Fiber-reinforced composites are the choice of materials for face skins while the core material comprises foam, honeycomb, or balsa wood. This thesis depicts an eccentric nozzle-based additive manufacturing (AM) technique based on potting to fabricate fiber-reinforced thermoset sandwich specimens. The conventional methods of manufacturing sandwich composites induce significant manual labour. These processes render high cost of fabrication, material waste, and restricted tailoring of designs. Recently, the infusion of additive manufacturing (AM) has garnered widespread attention for its potential to produce high-strength composites. This influx of AM can be attributed to its unprecedented attributes of tailorable design and flexible mechanical properties to produce functional components at a rapid pace and reduced cost. The objective of this thesis is to utilize the potential of AM to produce fiber-reinforced thermoset sandwich structures for high-strength applications. The research task comprises a sequential approach of initially developing 3D models of two sandwich mold specimens for mechanical characterization (a dog-bone and a rectangular bar). In this work, we adopted a commercial slicer software to develop a unique G-code generating the toolpath for extruding carbon fiber and epoxy face skin materials from a dispensing medium into the cured mold. The original framework of the thesis was then to bond commercially available foam to the face skin. We presented a proposed plan of action for performing 3-pont bending tests and tensile tests of sandwich structures to evaluate load-displacement data, tensile strength, etc. As a means to efficiently transition from manufacturing experiments to numerical simulation, the next part of this thesis presents Finite Element Analysis (FEA) studies to conduct numerical simulation and design optimization of sandwich-shaped structures for the aerospace industry. We performed numerical simulation of a 3-point bending test on a sandwich composite beam in ANSYS to evaluate the load-deflection behavior. Next, we used the built-in optimization module in ANSYS to perform design optimization of three novel structural designs for potential applications in the aerospace industry. The results yielded significant mass savings for all three configurations. Finally, the thesis presents comparative single-objective weight and cost-optimization studies of sandwich composites, carbon-epoxy, and aluminum alloy beams using the interior-point algorithm in MATLAB. The study yielded optimum cost and weight values for these beams within specified constraints. Overall, this work aims to manifest the significance of nozzle-based AM and Finite Element Analysis (FEA) to fabricate and optimize sandwich composite structures for the aerospace industry. Principal benefits include reduced cost, faster production, and improved fuel efficiency.
机译:夹层复合结构是一类独特的层压复合材料,广泛应用于航空、民用、船舶和汽车行业。夹层结构由一组两个坚硬的外表面蒙皮组成,这些蒙皮粘合到一个低密度的厚中心核心上。纤维增强复合材料是面部皮肤的材料选择,而芯材包括泡沫、蜂窝或轻木。本论文描述了一种基于灌封的偏心喷嘴增材制造 (AM) 技术,用于制造纤维增强热固性夹层样品。制造夹层复合材料的传统方法会产生大量的体力劳动。这些过程导致制造成本高、材料浪费和设计定制受限。最近,增材制造 (AM) 的注入因其生产高强度复合材料的潜力而受到广泛关注。增材制造的涌入可归因于其前所未有的可定制设计和灵活的机械特性,以快速和降低成本生产功能组件。本论文的目标是利用增材制造的潜力来生产用于高强度应用的纤维增强热固性夹层结构。研究任务包括一种顺序方法,即初步开发两个夹层模具试样的 3D 模型,用于机械表征(一个狗骨和一个矩形棒)。在这项工作中,我们采用了商用切片机软件来开发一个独特的 G 代码,生成用于将碳纤维和环氧树脂表面表皮材料从分配介质挤出到固化模具中的刀具路径。论文的原始框架是将市售泡沫粘合到面部皮肤上。我们提出了一个拟议的行动计划,用于对夹层结构进行 3 桥弯曲测试和拉伸测试,以评估载荷位移数据、抗拉强度等。作为从制造实验到数值仿真有效过渡的一种方式,本论文的下一部分介绍了有限元分析 (FEA) 研究,以对航空航天工业的夹层形结构进行数值仿真和设计优化。我们在 ANSYS 中对夹层复合梁进行了 3 点弯曲试验的数值仿真,以评估载荷偏转行为。接下来,我们使用 ANSYS 中的内置优化模块对三种新颖的结构设计进行设计优化,以满足航空航天工业中的潜在应用需求。结果为所有三种配置都节省了大量质量。最后,本论文介绍了使用 MATLAB 中的内点算法对夹层复合材料、碳环氧树脂和铝合金梁进行单目标重量和成本优化的比较研究。该研究在指定约束下为这些梁产生了最佳成本和重量值。总体而言,这项工作旨在展示基于喷嘴的增材制造和有限元分析 (FEA) 在制造和优化航空航天工业夹层复合材料结构方面的重要性。主要优点包括降低成本、加快生产和提高燃油效率。

著录项

  • 作者

    Syed, Rizwan Quadri.;

  • 作者单位

    Rutgers The State University of New Jersey, School of Graduate Studies.;

  • 授予单位 Rutgers The State University of New Jersey, School of Graduate Studies.;
  • 学科 Mechanical engineering.;Aerospace engineering.
  • 学位
  • 年度 2020
  • 页码 152
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mechanical engineering.; Aerospace engineering.;

    机译:机械工程。;航空航天工程。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号