首页> 外文学位 >Stratified Construction of Neural Network Potentials and Co-Evolutionary Global Structure Optimization for Acceleration of Ab Initio Materials Prediction
【24h】

Stratified Construction of Neural Network Potentials and Co-Evolutionary Global Structure Optimization for Acceleration of Ab Initio Materials Prediction

机译:神经网络电位的分层构造和协同进化全局结构优化,以加速 Ab Initio 材料预测

获取原文
获取原文并翻译 | 示例

摘要

Density functional theory has gained prominence in the computational community as a successful materials modeling and prediction tool, demonstrated by numerous successful applications of the theory. However, computationally expensive scaling of the approach with the system size is restricting its widespread use, particularly, in the unconstrained search for novel materials. This limitation motivated the development of accurate and efficient interatomic interaction models for acceleration of the first- principles materials prediction. Neural network interatomic potentials, proposed as an alternative means of total energy calculation, have shown promising performance in mapping the ab initio energy landscape. Present challenges, such as reliable sampling of configuration space for generating training dataset and efficient construction of neural network models are topics of active research in the community.The present work aims to address the methodological challenges in constructing neural network potentials, improve the global structure optimization efficiency, ex- amine the developed methodologies' performance in predicting new materials, and explore the applicability of first-principles approaches in materials modeling.To improve the efficiency and reliability of the neural network potentials, a stratified training scheme for the construction of the interaction model for multicomponent systems and an evolutionary scheme for dataset generation are introduced. Further- more, a multitribe co-evolutionary approach is developed to accelerate the global optimization via promoting the suitability of the search results with exchanging the best candidate members among the nearby populations. After extensive benchmark- ing tests, the proposed method developments have been employed for a systematic comparison of neural network potentials and a widely used empirical potential performance in identifying the ab initio ground states of Cu-Pd-Ag nanoparticles. The search results revealed that neural network potentials significantly outperform the empirical Gupta model in guiding the first-principle search for novel phases and that the co-evolutionary global optimization scheme results in substantial improvement in convergence rate of the search process. As an example of using first-principle methods for guiding materials discovery and interpreting experimental results, density functional theory is employed to study a synthesized high-pressure phase of near-stoichiometric LiB compound. The simulations of the complex evolution of the compound success- fully interpreted the experimental observations and verified a previously predicted phase.
机译:密度泛函理论作为一种成功的材料建模和预测工具,在计算界获得了突出的地位,该理论的大量成功应用证明了这一点。然而,随着系统大小对该方法进行计算成本高昂的缩放限制了其广泛使用,特别是在无约束地寻找新材料方面。这一限制促使开发准确高效的原子间相互作用模型,以加速第一性原理材料预测。神经网络原子间势被提议作为总能量计算的替代方法,在绘制 ab initio 能源景观方面显示出有希望的性能。目前的挑战,例如用于生成训练数据集的配置空间的可靠采样和神经网络模型的高效构建,是社区积极研究的话题。目前的工作旨在解决构建神经网络电位的方法论挑战,提高全局结构优化效率,检验所开发方法在预测新材料方面的性能,并探索第一性原理方法在材料建模中的适用性。为了提高神经网络电位的效率和可靠性,该文提出了一种用于构建多组分系统交互模型的分层训练方案和一种用于数据集生成的进化方案。此外,开发了一种多部落协同进化方法,通过在附近种群之间交换最佳候选成员来促进搜索结果的适用性,从而加速全局优化。经过广泛的基准测试,所提出的方法开发已被用于系统比较神经网络电位和广泛使用的经验电位性能,以识别 Cu-Pd-Ag 纳米颗粒的从头基态。搜索结果显示,神经网络潜力在指导新阶段的第一性原理搜索方面明显优于经验 Gupta 模型,并且协同进化全局优化方案导致搜索过程收敛率的显著提高。作为使用第一性原理方法指导材料发现和解释实验结果的一个例子,采用密度泛函理论研究了近化学计量 LiB 化合物的合成高压相。对化合物复杂演变的模拟成功地完全解释了实验观察结果并验证了先前预测的阶段。

著录项

  • 作者

    Hajinazar, Samad .;

  • 作者单位

    State University of New York at Binghamton.;

    State University of New York at Binghamton.;

    State University of New York at Binghamton.;

  • 授予单位 State University of New York at Binghamton.;State University of New York at Binghamton.;State University of New York at Binghamton.;
  • 学科 Condensed matter physics.;Computational physics.;Materials science.
  • 学位
  • 年度 2019
  • 页码 170
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Condensed matter physics.; Computational physics.; Materials science.;

    机译:凝聚态物理学。;计算物理学。;材料科学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号