首页> 外文学位 >Reliable Transportation Networks Utilizing Emerging Technologies and Pricing Strategies
【24h】

Reliable Transportation Networks Utilizing Emerging Technologies and Pricing Strategies

机译:利用新兴技术和定价策略的可靠运输网络

获取原文
获取原文并翻译 | 示例

摘要

Travel time reliability plays a pivotal role in the system efficiency and level of service of transportation networks. Transportation network users are heterogeneous, and they may value travel time reliability differently. The importance level of travel time reliability for different travelers depends upon many factors including the user’s risk acceptance level and trip purpose and departure time. Thus, travelers tend to maximize travel time reliability, in addition to minimizing their travel times. One of the main challenges in transportation planning is the high computational time of traffic simulation tools that consider heterogeneous users and their responses to travel time reliability. Path finding problem constitutes an essential problem in these traffic simulation tools. Therefore, this study presents two heuristic algorithms to improve the computational time of reliable path finding algorithms by reducing the network size of each specific origin and destination pair in stochastic time-dependent networks. The network contraction algorithms, presented in this study, are based on the comparison of optimistic and pessimistic solutions resulting from minimum and maximum travel time realizations of a Monte-Carlo simulation-based approach. The major contribution of the proposed approach is to improve computational efficiency of the stochastic path finding problem, considering travel time correlations and travelers’ heterogeneity, in large-scale applications. Comparing the performance and accuracy of the approach with those of the approach without any network contraction for two large-scale networks demonstrates significant computational improvements and a high accuracy level.Different traffic and demand management strategies have also been used to improve reliability of transportation networks. These strategies, including congestion pricing, have great impacts on users’ reliable path choices. Considering a reliability measure in the travelers’ path choices naturally impacts the congestion pattern, which in turn, affects the outcomes of pricing strategies. Furthermore, congestion pricing alters link travel time distributions in stochastic transportation networks. Therefore, this study finds an equitable pricing scheme that minimizes the total travel time of auto users in a general bimodal network considering heterogeneous users with different values of time and reliability. The main contribution of this proposed approach is accounting for travel time reliability in finding an equitable pricing scheme. This approach is successfully applied to a modified Sioux Falls network to explore the impacts of subsidization strategy, congestion level, and considering travel time reliability on the pricing strategy and its effectiveness.Finally, emerging technologies, such as connected and autonomous vehicle technologies, have attracted the attention of transportation system planners in recent years, as an alternative to improve mobility and reliability of transportation networks. Having a traffic simulation tool that considers the presence of these technologies is essential to estimate their impacts on traffic congestion and travel time reliability. Therefore, this study presents a mesoscopic simulation tool to account for the presence of connected and autonomous vehicles at the network level by incorporating adaptive fundamental diagrams due to the non-uniform distribution of different vehicle types with heterogeneous drivers. This tool is then used to investigate the impacts of a mixed traffic of connected, autonomous, and human-driven vehicles on traffic flow and travel time reliability at the network level. The results show the superiority of connected and autonomous vehicles over regular vehicles in mitigating traffic congestion and improving travel time reliability.
机译:旅行时间可靠性在交通网络的系统效率和服务水平中起着关键作用。交通网络用户是异构的,他们可能以不同的方式看待旅行时间可靠性。不同旅行者的旅行时间可靠性的重要性取决于许多因素,包括用户的风险接受程度和旅行目的以及出发时间。因此,除了最小化旅行时间外,旅行者还倾向于最大限度地提高旅行时间的可靠性。交通规划中的主要挑战之一是交通仿真工具的高计算时间,这些工具考虑了异构用户及其对出行时间可靠性的响应。路径查找问题是这些交通模拟工具中的一个重要问题。因此,本研究提出了两种启发式算法,通过减小随机时间相关网络中每个特定起点和目的地对的网络大小来缩短可靠寻路算法的计算时间。本研究中提出的网络收缩算法基于基于蒙特卡洛仿真的方法的最小和最大旅行时间实现所得出的乐观和悲观解的比较。所提出的方法的主要贡献是提高大规模应用中随机路径查找问题的计算效率,同时考虑旅行时间相关性和旅行者的异质性。将该方法的性能和准确性与两个大规模网络没有任何网络收缩的方法进行比较,表明计算能力显著提高,准确率高。不同的交通和需求管理策略也被用于提高交通网络的可靠性。这些策略(包括拥塞定价)对用户可靠的路径选择有很大影响。在旅行者的路径选择中考虑可靠性指标自然会影响拥堵模式,进而影响定价策略的结果。此外,拥堵定价改变了随机交通网络中的链接旅行时间分布。因此,本研究找到了一种公平的定价方案,在考虑具有不同时间和可靠性值的异构用户的情况下,在一般双峰网络中最大限度地减少汽车用户的总出行时间。这种拟议方法的主要贡献是在寻找公平的定价方案时考虑旅行时间的可靠性。这种方法成功地应用于修改后的苏福尔斯网络,以探索补贴策略、拥堵程度的影响,并考虑旅行时间可靠性对定价策略及其有效性的影响。最后,近年来,互联和自动驾驶汽车技术等新兴技术引起了交通系统规划者的关注,作为提高交通网络的移动性和可靠性的替代方案。拥有一个考虑这些技术存在的交通模拟工具对于估计它们对交通拥堵和旅行时间可靠性的影响至关重要。因此,本研究提出了一种细观仿真工具,通过结合自适应基本图来解释网络级别互联和自动驾驶汽车的存在,这是由于异构驾驶员的不同车辆类型的分布不均匀造成的。然后,该工具用于研究互联、自动驾驶和人工驾驶车辆的混合交通对网络级别的交通流量和行驶时间可靠性的影响。结果表明,互联和自动驾驶汽车在缓解交通拥堵和提高出行时间可靠性方面优于普通车辆。

著录项

  • 作者单位

    Michigan State University;

    Michigan State University;

    Michigan State University;

  • 授予单位 Michigan State University;Michigan State University;Michigan State University;
  • 学科 Civil engineering
  • 学位
  • 年度 2021
  • 页码 153
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Civil engineering;

    机译:土木工程;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号