首页> 外文学位 >Forming Strategy Design and Mechanics Analysis in Flexible Sheet Metal Forming Systems
【24h】

Forming Strategy Design and Mechanics Analysis in Flexible Sheet Metal Forming Systems

机译:柔性钣金成型系统中的成型策略设计和力学分析

获取原文
获取原文并翻译 | 示例

摘要

Flexible sheet metal forming processes possess significant potential in today's industrial goods market with the advent of the next generation manufacturing paradigm, which put stresses on products customization and cost efficiency. However, due to the unique tooling configurations and forming mechanisms adopted in different flexible sheet metal forming processes, there exist many technical challenges to be tackled to fully facilitate the manufacturing potential of the flexible forming processes. For example, the typical material deformation paths in double-sided incremental forming (DSIF) – a highly flexible dieless sheet forming technology – are rather different from that of conventional sheet metal forming processes (e.g., sheet metal stamping), and such a difference makes it challenging to analyze and optimize the process variables for securing satisfactory product qualities when varies part designs are targeted.In this study, technical challenges in selected flexible sheet metal forming processes will be addressed and new process design and analyses approaches will be introduced to tackle the challenges. More detailed outline of the research contents included in the current thesis for two kinds of flexible sheet metal forming processes, which are DSIF and press brake angle bracket forming, is as follows:1) A new DSIF toolpath strategy for accurately manufacturing corrugated structures is introduced for the purpose of extending the range of product families that are manufacturable by the forming process. The new toolpath strategy named Regional Plastic Incremental Bending (RPIB) is designed to enhance the overall manufacturing accuracy of formed corrugated parts by reducing the effect of in-process global springback occurs in DSIF by the contacts between the tools and sheet, and its development process is explained. A set of experimental verifications prove that the manufacturing accuracy with a use of the RPIB strategy is significantly enhanced compared with a more basic DSIF toolpath strategy for manufacturing corrugated structure (which will be referred to as linear toolpath in the chapter) that resembles the regular toolpaths used for forming generic three-dimensional features (e.g., truncated cones and pyramids).2) Detailed numerical analyses of full-scale DSIF processes using the finite element (FE) method are conducted, mainly considering the effects of materials kinematic hardening behavior and structural compliance of the forming machine on the numerical prediction of the forming forces and formed geometries. A simple method of virtually measuring the material softening by kinematic hardening with non-monotonic loading paths in the DSIF process is introduced, so that the material softening effect can be correlated with the observed changes in the numerically predicted forming forces and formed geometries.3) A study of a press brake operation for flexibly manufacturing darted angle brackets is conducted. A combined analysis approach utilizing both FE analyses and experimental trials is established to understand the materials deformation mechanics in the darted bracket manufacturing process. Furthermore, a systematic method of determining the minimum applicable sheet size for successfully manufacturing darted brackets based on the given material properties and tooling condition is established. To make the study more comprehensive, a testing method for quantitively measuring the stiffness of formed angle brackets is also introduced, with actual experimental examples for evaluating the stiffness improvements with darts in angle bracket design and manufacturing are given.The overall study will be concluded by addressing the highlights of each research section in the end of the thesis, along with several suggestions of possible future research directions that can be extended or branched out based on the contents introduced throughout the thesis.
机译:随着下一代制造范式的出现,灵活的钣金成型工艺在当今的工业产品市场中具有巨大潜力,这给产品定制和成本效率带来了压力。然而,由于不同的柔性钣金成型工艺采用独特的工具配置和成型机制,因此存在许多技术挑战需要解决,以充分促进柔性成型工艺的制造潜力。例如,双面增量成型 (DSIF) (一种高度灵活的无模板材成型技术)中的典型材料变形路径与传统的钣金成型工艺(例如钣金冲压)的变形路径大不相同,这种差异使得在针对各种零件设计时分析和优化工艺变量以确保令人满意的产品质量变得具有挑战性。在本研究中,将解决选定的柔性钣金成型工艺中的技术挑战,并将引入新的工艺设计和分析方法来应对这些挑战。当前论文中包括的两种柔性钣金成型工艺(即 DSIF 和折弯机角支架成型)的研究内容更详细概述如下:1) 引入了一种新的 DSIF 刀具路径策略,用于精确制造波纹结构,目的是扩展可通过成型工艺制造的产品系列的范围。名为区域塑性增量弯曲 (RPIB) 的新刀具路径策略旨在通过减少工具和板材之间的接触在 DSIF 中发生的过程中全局回弹的影响来提高成型波纹零件的整体制造精度,并解释了其开发过程。一组实验验证证明,与用于制造波纹结构的更基本的 DSIF 刀具路径策略(在本章中称为线性刀具路径)相比,使用 RPIB 策略的制造精度显著提高,该策略类似于用于形成通用三维特征(例如,截断的圆锥体和金字塔)的常规刀具路径。使用有限元 (FE) 对全尺寸 DSIF 工艺进行详细数值分析方法进行,主要考虑材料运动硬化行为和成型机的结构柔度对成型力和成型几何形状的数值预测的影响。介绍了一种在 DSIF 过程中通过非单调加载路径的运动硬化虚拟测量材料软化的简单方法,以便将材料软化效应与观察到的数值预测成型力和成型几何形状的变化相关联.3) 研究了用于灵活制造飞镖尖括号的折弯机操作。建立了一种利用有限元分析和实验试验的组合分析方法,以了解飞镖支架制造过程中的材料变形力学。此外,建立了一种系统的方法,根据给定的材料特性和工具条件确定成功制造飞镖支架的最小适用板材尺寸。为了使研究更加全面,还介绍了一种定量测量成型角架刚度的测试方法,并给出了评估角架设计和制造中飞镖刚度改进的实际实验实例。整体研究将在论文末尾通过解决每个研究部分的亮点来结束,并提出一些可能的未来研究方向的建议,这些建议可以根据整个论文中介绍的内容进行扩展或分支。

著录项

  • 作者

    Leem, Dohyun.;

  • 作者单位

    Northwestern University.;

    Northwestern University.;

    Northwestern University.;

  • 授予单位 Northwestern University.;Northwestern University.;Northwestern University.;
  • 学科 Mechanical engineering.
  • 学位
  • 年度 2022
  • 页码 383
  • 总页数 383
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mechanical engineering.;

    机译:机械工程。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号