首页> 外文学位 >A New Tag-Based Approach for Real-Time Detection of Advanced Cyber Attacks
【24h】

A New Tag-Based Approach for Real-Time Detection of Advanced Cyber Attacks

机译:一种基于标签的新方法,用于实时检测高级网络攻击

获取原文
获取原文并翻译 | 示例

摘要

We are witnessing a rapid escalation in targeted cyber-attacks, often called "Advanced and Persistent Threats" (APTs), carried out by skilled adversaries. By combining social engineering (e.g.,spear-phishing) with advanced exploit techniques, these adversaries routinely bypass widely-deployed software protections such as address space randomization. Consequently, enterprises have come to rely on second-line defenses such as security information and event management (SIEM) tools. While generally useful, these tools generate vast quantities of information, making it difficult for a security analyst to distinguish attacks from background noise. Moreover, analysts lack the tools to "connect the dots" to piece together fragments of an attack campaign that spans multiple applications, hosts, and time periods. It is no wonder that many APT campaigns go undetected for weeks to months.Researchers have proposed the use of causal dependencies, also called provenance, to bring more automation to cyber attack detection. Provenance provides additional context to prune away false positives, and can link together disparate attack steps. However, a straight-forward application of provenance leads to campaign summaries that are many orders of magnitude larger than what can be visualized or understood by a cyber analyst. Moreover, provenance data consists of billions of events, posing major challenges for real-time analysis.In this thesis, we first propose novel techniques that achieve two orders of magnitude reduction in the size of dependence graphs, while provably preserving analysis results. This makes it feasible to analyze scenarios consisting of tens of billions of events in main memory, where graph traversals can be implemented efficiently. To speed up detection and scenario reconstruction, we observed that these techniques typically compute and use global context at each graph node. We introduced the notion of tags to compactly summarize global context, and propagate these tags efficiently from ancestor nodes to descendant nodes using local computations. We have introduced several novel tags and propagation semantics, each offering different trade-offs in terms of efficiency and accuracy. Our experimental evaluation, carried out through several DARPA-sponsored red team exercises, demonstrates that our techniques are (a) effective in identifying stealthy attack campaigns, (b) reduce false alarm rates by more than an order of magnitude, and (c) yield compact attack scenarios consisting of tens to hundreds of events while sifting through event logs with tens to hundreds of millions of events.
机译:我们目睹了由熟练的对手实施的针对性网络攻击(通常称为“高级和持续威胁”(APT))的迅速升级。通过将社会工程(例如鱼叉式网络钓鱼)与高级漏洞利用技术相结合,这些攻击者通常会绕过广泛部署的软件保护措施,例如地址空间随机化。因此,企业开始依赖二线防御措施,例如安全信息和事件管理 (SIEM) 工具。虽然这些工具通常很有用,但会生成大量信息,使安全分析师难以区分攻击和背景噪音。此外,分析师缺乏“连接点”的工具,无法将跨越多个应用程序、主机和时间段的攻击活动的片段拼凑在一起。难怪许多 APT 活动在数周到数月内未被发现。研究人员建议使用因果依赖关系(也称为来源)来提高网络攻击检测的自动化程度。Provenance 提供了额外的上下文来消除误报,并且可以将不同的攻击步骤链接在一起。然而,直接应用出处会导致活动摘要比网络分析师可以可视化或理解的内容大许多数量级。此外,来源数据由数十亿个事件组成,对实时分析构成了重大挑战。在这篇论文中,我们首先提出了新的技术,使依赖图的大小减少了两个数量级,同时可以证明地保留了分析结果。这使得分析主内存中由数百亿个事件组成的场景成为可能,其中可以有效地实现图形遍历。为了加快检测和场景重建,我们观察到这些技术通常在每个图形节点计算和使用全局上下文。我们引入了标签的概念来紧凑地汇总全局上下文,并使用局部计算将这些标签从祖先节点有效地传播到后代节点。我们引入了几种新颖的标签和传播语义,每种语义在效率和准确性方面都提供了不同的权衡。我们通过 DARPA 赞助的几次红队演习进行的实验评估表明,我们的技术 (a) 有效地识别隐蔽的攻击活动,(b) 将误报率降低一个数量级以上,以及 (c) 产生由数十到数百个事件组成的紧凑攻击场景,同时筛选包含数千到数亿个事件的事件日志。

著录项

  • 作者

    Hossain, Md. Nahid.;

  • 作者单位

    State University of New York at Stony Brook.;

    State University of New York at Stony Brook.;

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;State University of New York at Stony Brook.;State University of New York at Stony Brook.;
  • 学科 Computer science.
  • 学位
  • 年度 2022
  • 页码 137
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computer science.;

    机译:计算机科学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号