首页> 外文学位 >Iatrogenic Electrocautery Damage and Cellular-Based Corrosion of Total Joint Arthroplasty Biomaterials
【24h】

Iatrogenic Electrocautery Damage and Cellular-Based Corrosion of Total Joint Arthroplasty Biomaterials

机译:医源性电烙损伤和全关节置换术生物材料的细胞腐蚀

获取原文
获取原文并翻译 | 示例

摘要

Introduction. The number of patients undergoing a Primary Total Knee Arthroplasty (PTKA) has been increasing steadily each year. Of those PTKA patients, 20% report long-term pain and/or some functional deficit. Cobalt-Chromium-Molybdenum (CoCrMo) alloy is one of the most used materials in Total Joint Arthroplasty (TJA) implants due the material’s high strength, high corrosion resistance, and biocompatibility. The release of metal ions and potential occurrence of metallosis in TJA has been shown to be detrimental to the longevity of the implant. The mechanisms leading to this increase in metal ion concentrations have been up for debate, with some believing it is caused by Electrocautery (EC) damage at the time of surgery and others believing it is caused by inflammatory cells attacking the implant surface. The purpose of this thesis is to identify to what degree Electrocautery damage can alter the implant surface and if inflammatory cells are able to alter the implant surface and ingest metal particles. Methodology. To better understand how EC damage can alter implant surfaces, three different types of femoral component bearing surfaces were selected and intentionally damaged in the operating room using the plasma arc from both monopolar (MP) (Bovie) and Bipolar (BP) (Aquamantys) sources. MP and BP EC damage was done at varying power levels using a 3-second hover method 3 mm from the implant surface. Scanning electron microscopy (SEM) (Zeiss, Oberkochen, Germany) was used to obtain a detailed microscopic analysis of the damaged areas. Energy-dispersive X-ray spectrometry (EDS) (Oxford, High Wycombe, UK) was utilized to assess the elements present in pits found in the corroded areas. Surface Topography was analyzed using a profilometer (DektakXT; Bruker, Tucson, AZ) in the central portion of the damaged area for each MP and BP energy setting. Each damaged area was evaluated with the aid of TalyMap (Mountains software; Digital Surf, Besan?on, France) using ISO 4287 measurements for Arithmetic Average height (Ra), Kurtosis (Rk), Heighest Peak to Lowest Valley (Rz), and Skewness (Rsk). SEM, EDS, and Surface Topography were also used to look at undamaged areas of the implants. In a separate experiment, IC-21 ATCC murine peritoneal macrophages were cultured with RPMI 1640 growth medium of supplemented with 10% fetal bovine serum (FBS), L-glutamine, and gentamicin. Select groups of cells were then activated using Interferon Gamma (IFNγ) and Lipopolysaccharide (LPS). CoCrMo alloy disks were cut, polished, passivated, and placed into 96 well plates and a select number intentionally damaged in the operating room with a MP EC device. After the cells were allowed to attach to the surface for 24 hours, culture medium was replaced every 12 hours and supernatant fluid was collected every 4 days starting on the second day of the experiment. After 30 days, cells were removed from the surface, counted and digested. The metal concentrations found in the supernatant and digested cell mixture were assessed using inductively coupled plasma spectrometry (ICP-MS), conducted at Brooks Applied Labs (Bothwell, WA). Statistical analysis was conducted using SigmaPlot and Microsoft Excel. Results. Surface Profilometry quantified the topographical changes due to the damage form the MP and BP EC devices. The median Ra and Rz measurements were larger for the BP damaged areas compared to the MP for all bearing surfaces. The Oxinium surface displayed the greatest increase in roughness parameters compared to the undamaged regions. The CoCr surface displayed the greatest Rsk for the BP damaged areas. The ZrN had the smallest differences in Rz and Ra for both MP and BP damage areas compared to undamaged areas. SEM imaging displayed pitting in the regions intentionally damage with a MP or BP EC device. Backscatter EDS analysis found significant changes in the elemental profile for the BP damage compared to the MP damage. Cellular corrosion of the CoCr disks was qu
机译:介绍。接受初次全膝关节置换术 (PTKA) 的患者人数每年都在稳步增加。在这些 PTKA 患者中,20% 报告长期疼痛和/或一些功能缺陷。钴铬钼 (CoCrMo) 合金是全关节置换术 (TJA) 植入物中最常用的材料之一,因为它具有高强度、高耐腐蚀性和生物相容性。TJA 中金属离子的释放和金属病的潜在发生已被证明对植入物的寿命有害。导致金属离子浓度增加的机制一直存在争议,一些人认为这是由手术时的电烙 (EC) 损伤引起的,而另一些人则认为这是由炎症细胞攻击植入物表面引起的。本论文的目的是确定电烙损伤可以在多大程度上改变植入物表面,以及炎症细胞是否能够改变植入物表面并吞噬金属颗粒。方法论。为了更好地了解 EC 损伤如何改变植入物表面,选择了三种不同类型的股骨组件承载表面,并在手术室中使用来自单极 (MP) (Bovie) 和双极 (BP) (Aquamantys) 源的等离子弧故意损坏。MP 和 BP EC 损伤是在距离植入物表面 3 mm 处使用 3 秒悬停方法以不同的功率水平造成的。扫描电子显微镜 (SEM)(Zeiss,Oberkochen,德国)用于获得受损区域的详细显微镜分析。能量色散 X 射线光谱法 (EDS)(牛津,海威科姆,英国)用于评估在腐蚀区域发现的坑中存在的元素。使用轮廓仪 (DektakXT;Bruker, Tucson, AZ) 位于每个 MP 和 BP 能量设置的受损区域的中心部分。每个受损区域都借助 TalyMap(Mountains 软件;Digital Surf,法国贝萨昂),使用 ISO 4287 测量算术平均高度 (Ra)、峰度 (Rk)、最高峰到最低谷值 (Rz) 和偏度 (Rsk)。SEM、EDS 和表面形貌也用于查看植入物的未受损区域。在另一项实验中,用补充有 10% 胎牛血清 (FBS)、L-谷氨酰胺和庆大霉素的 RPMI 1640 生长培养基培养 IC-21 ATCC 小鼠腹膜巨噬细胞。然后使用干扰素 γ (IFNγ) 和脂多糖 (LPS) 激活选定的细胞组。将 CoCrMo 合金盘切割、抛光、钝化并放入 96 孔板中,并在手术室中使用 MP EC 设备故意损坏了选定数量的孔板。让细胞附着在表面 24 小时后,从实验的第二天开始,每 12 小时更换一次培养基,每 4 天收集一次上清液。30 天后,从表面取出细胞,计数并消化。使用 Brooks Applied Labs(华盛顿州博思韦尔)进行的电感耦合等离子体光谱法 (ICP-MS) 评估上清液和消化细胞混合物中发现的金属浓度。使用 SigmaPlot 和 Microsoft Excel 进行统计分析。结果。表面轮廓测定法量化了由于 MP 和 BP EC 设备损伤引起的地形变化。与所有轴承表面的 MP 相比,BP 损伤区域的中位数 Ra 和 Rz 测量值更大。与未受损区域相比,Oxinium 表面的粗糙度参数增加幅度最大。CoCr 表面在 BP 损伤区域显示出最大的 Rsk。与未受损区域相比,MP 和 BP 损伤区域的 ZrN 在 Rz 和 Ra 方面的差异最小。SEM 成像显示 MP 或 BP EC 设备故意损坏的区域出现点蚀。反向散射 EDS 分析发现,与 MP 损伤相比,BP 损伤的元素分布发生了显着变化。CoCr 盘的细胞腐蚀是 qu

著录项

  • 作者

    Miller, Kirsten Carol;

  • 作者单位

    The University of Tennessee Health Science Center;

    The University of Tennessee Health Science Center;

    The University of Tennessee Health Science Center;

  • 授予单位 The University of Tennessee Health Science Center;The University of Tennessee Health Science Center;The University of Tennessee Health Science Center;
  • 学科 Biomedical engineering;Surgery
  • 学位
  • 年度 2021
  • 页码 62
  • 总页数 62
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biomedical engineering; Surgery;

    机译:生物医学工程;手术;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号