首页> 外文学位 >Fire and Fungi: Fungal Ecology in Pyrophilic Ecosystems
【24h】

Fire and Fungi: Fungal Ecology in Pyrophilic Ecosystems

机译:火与真菌:嗜热生态系统中的真菌生态学

获取原文
获取原文并翻译 | 示例

摘要

Fire is a global phenomenon that annually burns approximately 3% of Earth’s terrestrial surface. While fire is an important component of many terrestrial ecosystems, climate change and anthropogenic influence are expected to alter global fire regimes (particularly fire frequency and intensity). This makes understanding fire’s role under a changing climate critical to preserving threatened ecosystems. Despite the need to protect these ecosystems, the manipulation of fire regimes is dangerous and often impossible in most systems. Pyrophilic, or fire recurrent ecosystems, however, may offer a useful model due to their long-term adaptation to recurrent fires. The fire regimes of pyrophilic ecosystems are maintained by feedbacks between fire and plant fuels, which has led to a historical focus on the role of plants in pyrophilic systems. This approach has largely ignored the role of soil microbes in these systems, despite their ability to modify plant fuel loads through saprotrophic, mutualistic, and pathogenic interactions. By improving our knowledge of the microbial processes that underly pyrophilic ecosystems, we may be able to better respond to future changes in the frequency and intensity of global fire regimes. In this dissertation, I assessed microbial roles in pyrophilic ecosystems by testing four primary questions 1) Does fire drive similar shifts to microbial community structure and seasonal trajectories across pyrophilic systems, 2-3) Do fire regime components (e.g. fire frequency and intensity) alter the microbial mediation of plant fuel loads via decomposition, and 4) Does fire modify microbial and abiotic soil components in ways that influence plant fuel production? I hypothesized that fire would modify microbial communities and their function (e.g. decomposition, mutualism, and pathogenic effects) in ways that modified plant fuel dynamics. I used four complementary experiments that manipulated fire regime components and combined molecular, field, and greenhouse techniques to develop a holistic understanding of microbial roles in pyrophilic ecosystems. Fire had similar effects on fungal community structure and seasonal trajectories across pyrophilic ecosystems. Furthermore, as the frequency and intensity of fires increased, microbial functions like decomposition slowed, and microbial interactions with plant fuel production were altered. This indicates that fire alters microbial community structure, seasonal dynamics, and function in ways that modify plant fuel loads. Since fire-microbial interactions influence plant fuel dynamics in ways that lead to fuel accumulation, this could drive positive feedbacks on future fires, and suggests that soil microbes play integral roles in maintaining the fire regimes of pyrophilic ecosystems. By understanding the processes that govern the fire regimes of pyrophilic ecosystems, we can better respond to and preserve terrestrial systems against future increases in fire frequency and intensity due to climate change and anthropogenic influence.
机译:火灾是一种全球现象,每年烧毁地球陆地表面约 3%。虽然火灾是许多陆地生态系统的重要组成部分,但预计气候变化和人为影响将改变全球火灾状况(尤其是火灾频率和强度)。这使得了解火灾在不断变化的气候下的作用对于保护受威胁的生态系统至关重要。尽管需要保护这些生态系统,但在大多数系统中,操纵火势是危险的,而且通常是不可能的。然而,由于亲火或反复发生的火灾生态系统长期适应反复发生的火灾,因此可能提供了一个有用的模型。亲热生态系统的火势是由火和植物燃料之间的反馈来维持的,这导致了对植物在亲热系统中的作用的历史关注。这种方法在很大程度上忽视了土壤微生物在这些系统中的作用,尽管它们能够通过腐生、共生和致病相互作用来改变植物燃料负荷。通过提高我们对嗜热生态系统背后的微生物过程的了解,我们可能能够更好地应对全球火灾频率和强度的未来变化。在这篇论文中,我通过测试四个主要问题来评估微生物在亲热生态系统中的作用 1) 火灾是否会导致微生物群落结构和亲热系统的季节性轨迹发生类似的变化,2-3) 火灾状况组件(例如火灾频率和强度)通过分解改变植物可燃物负荷的微生物介导,以及 4) 火灾是否以影响植物可燃物生产的方式改变微生物和非生物土壤成分?我假设火会以改变植物燃料动力学的方式改变微生物群落及其功能(例如分解、共生和致病作用)。我使用了四个互补的实验,这些实验操纵了火势成分,并结合了分子、场和温室技术,以全面了解微生物在亲热生态系统中的作用。火灾对整个嗜热生态系统的真菌群落结构和季节性轨迹也有类似的影响。此外,随着火灾频率和强度的增加,分解等微生物功能减慢,微生物与植物燃料生产的相互作用发生了变化。这表明火灾会改变微生物群落结构、季节性动态,并以改变植物燃料负荷的方式发挥作用。由于火与微生物的相互作用以导致燃料积累的方式影响植物燃料动力学,这可能会推动对未来火灾的正反馈,并表明土壤微生物在维持亲热生态系统的火势方面发挥着不可或缺的作用。通过了解控制亲热生态系统火灾状况的过程,我们可以更好地应对和保护陆地系统,防止未来由于气候变化和人为影响而导致的火灾频率和强度增加。

著录项

  • 作者

    Hopkins, Jacob Roffey;

  • 作者单位

    University of Kansas;

    University of Kansas;

    University of Kansas;

  • 授予单位 University of Kansas;University of Kansas;University of Kansas;
  • 学科 Ecology;Biology;Environmental science
  • 学位
  • 年度 2021
  • 页码 215
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ecology; Biology; Environmental science;

    机译:生态学;生物;环境科学;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号