首页> 外文学位 >Composition and Interface Engineering for Efficient and Stable Inverted Perovskite Solar Cell
【24h】

Composition and Interface Engineering for Efficient and Stable Inverted Perovskite Solar Cell

机译:高效稳定的倒置钙钛矿太阳能电池的成分和界面工程

获取原文
获取原文并翻译 | 示例

摘要

Hybrid organic-inorganic perovskite solar cells (PSCs) have been a rising star in solar energy conversion devices. In the recent five years, the certified champion power conversion efficiency (PCE) of PSCs has leaped to 25.2% from 15%, surpassing that of multicrystalline silicon (22.8%) and CIGS solar cells (23.4%), and approaching the record of single crystal silicon solar cell at 26 %. This is due to the unique structural flexibility of perovskite material over traditional inorganic photovoltaic system in that there are vast possibilities to alter the chemical compositions, fabrication processes and associative materials for device optimizations and scientific investigations. Inverted PSCs are one type of PSCs that exhibit great scalability and good device stability and performance due to the large selection space of material systems. My thesis is mainly focused on studying the composition and interface of perovskite and charge transport materials and their impacts on stability and performance of resulted solar cell device. Perovskite solar cell adopts layer-by-layer structure consist of bottom glass or flexible substrate with transparent conducting oxide (TCO) as bottom electrode. On top of TCO, a layer of hole transporting layer (HTL) or electron transporting layer (ETL) is applied to extract charge from perovskite layer on top. This ETL or HTL will be used as substrate to deposit subsequent perovskite layer which could dramatically affect the film quality due to specific surface properties. Also, the carrier concentration, energy level and carrier mobility of such layer determines the charge extraction as well as charge transport properties in contact with perovskite materials. Perovskite layer is normally deposited by solution process. Due to the polycrystalline nature of resulted perovskite thin film, the orientation and morphology of perovskite film is decisive in the process of light absorption, charge generation and transport. Also, the composition of perovskite precursor solutions can be easily adjusted for achieving certain objectives. A subsequent ETL or HTL is then placed before final evaporation of top electrode normally being metallic materials. In addition, the interfaces between each layers can also be critical in solar cell operation and attracts tremendous scientific effort. To achieve efficient solar cell operation, ETL/Perovskite/HTL layers and their interfaces requires thorough investigations and engineering attempts. In my thesis research, I mainly studied inverted perovskite solar cell based on NiOx as HTL and PCBM as ETL, the basic device structure is glass/FTO/NiOx/Perovskite/PCBM/Ag. I mainly adopted two approaches for efficient and stable photovoltaic devices. First, the composition of perovskite has been studied to understand the physical and chemical impact of compositional variation of related materials on solar cell performance and stability. Due to the structural tolerance of perovskite material, the composition can be varied at a certain range without significantly disrupting the structure and properties. I unravel the effect of different cations including cesium (Cs), methylammonium (MA) and formamidinium (FA) in small band gap FA-based perovskite formula. I systematically studied the crystal growth process with different perovskite formula and found an important crystalline intermediate-mediated film growth that has significant impact on film quality. Increased relative amount of MA against Cs resulted in the formation of MAI-PbI2-DMSO intermediate which retards the crystallization and hinders the transformation of photoactive perovskite phase. On the other hand, Cs rich formula leaded to PbI2-DMSO intermediate which facilitates the process. The impact of compositional variation on electronic structure and hence energy alignment has also been revealed. The inclusion of smaller size MA and Cs shifted the conduction band to be better aligned with electron transporting PCBM. The collective ef
机译:混合有机-无机钙钛矿太阳能电池 (PSC) 一直是太阳能转换设备领域的后起之秀。近五年来,PSC 的认证冠军功率转换效率 (PCE) 从 15% 跃升至 25.2%,超过了多晶硅 (22.8%) 和 CIGS 太阳能电池 (23.4%),接近单晶硅太阳能电池 26% 的记录。这是由于钙钛矿材料相对于传统无机光伏系统具有独特的结构灵活性,因为有很大的可能性可以改变化学成分、制造工艺和缔合材料,以进行器件优化和科学研究。倒置 PSC 是一种 PSC,由于材料系统的选择空间大,它表现出很好的可扩展性和良好的器件稳定性和性能。我的论文主要集中在研究钙钛矿和电荷传输材料的组成和界面,以及它们对所得太阳能电池器件的稳定性和性能的影响。钙钛矿太阳能电池采用逐层结构,由底玻璃或柔性衬底组成,底部以透明导电氧化物 (TCO) 为底部电极。在 TCO 的顶部,应用一层空穴传输层 (HTL) 或电子传输层 (ETL) 以从顶部的钙钛矿层中提取电荷。该 ETL 或 HTL 将用作沉积后续钙钛矿层的衬底,由于特定的表面特性,这可能会极大地影响薄膜质量。此外,该层的载流子浓度、能级和载流子迁移率决定了与钙钛矿材料接触的电荷提取和电荷传输特性。钙钛矿层通常通过溶液工艺沉积。由于所得钙钛矿薄膜的多晶性质,钙钛矿薄膜的取向和形态在光吸收、电荷产生和传输过程中起决定性作用。此外,钙钛矿前驱体溶液的组成可以很容易地进行调整以实现某些目标。然后在顶部电极(通常是金属材料)的最终蒸发之前放置后续的 ETL 或 HTL。此外,每层之间的界面在太阳能电池运行中也至关重要,并吸引了大量的科学努力。为了实现高效的太阳能电池运行,ETL/Perovskite/HTL 层及其界面需要进行彻底的研究和工程尝试。在我的论文研究中,我主要研究了基于 NiOx 作为 HTL 和 PCBM 作为 ETL 的倒置钙钛矿太阳能电池,基本器件结构是玻璃/FTO/NiOx/钙钛矿/PCBM/Ag。我主要采用了两种方法来制作高效稳定的光伏器件。首先,研究了钙钛矿的成分,以了解相关材料成分变化对太阳能电池性能和稳定性的物理和化学影响。由于钙钛矿材料的结构耐受性,成分可以在一定范围内变化,而不会显着破坏结构和特性。我揭示了不同阳离子的影响,包括铯 (Cs)、甲基铵 (MA) 和甲脒 (FA) 在小带隙 FA 钙钛矿配方中。我系统研究了不同钙钛矿配方的晶体生长过程,发现了一个重要的晶体中间介导的薄膜生长,对薄膜质量有重大影响。MA 对 Cs 的相对量增加导致 MAI-PbI2-DMSO 中间体的形成,其延缓结晶并阻碍光活性钙钛矿相的转化。另一方面,富含 Cs 的分子式导致 PbI2-DMSO 中间体,从而促进了该过程。成分变化对电子结构的影响,从而对能量排列的影响也已得到揭示。较小尺寸 MA 和 Cs 的加入使导带与电子传输 PCBM 更好地对齐。集体 ef

著录项

  • 作者

    Hu, Yiyi.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

    Hong Kong University of Science and Technology (Hong Kong).;

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;Hong Kong University of Science and Technology (Hong Kong).;Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Chemistry.
  • 学位
  • 年度 2021
  • 页码 156
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Chemistry.;

    机译:化学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号