首页> 外文学位 >Finite strip analysis of structures with arbitrary boundary conditions
【24h】

Finite strip analysis of structures with arbitrary boundary conditions

机译:具有任意边界条件的结构的有限条带分析

获取原文
获取原文并翻译 | 示例

摘要

The classical finite strip method can treat linearly elastic prismatic folded plate structures if the structure is simply supported at the ends, if restraints such as bents and diaphragms exert no longitudinal restraint, and if longitudinal loads are in equilibrium. Because it uses a series of longitudinal basis functions which decouple, permitting the solution of a series of relatively small harmonic stiffnesses instead of a larger, combined one, the method is very efficient. Many solutions have been proposed to eliminate the above restrictions. Some of these permit non-simple end supports, but none employ a decoupled harmonic series for general folded plate structures; furthermore, none can treat longitudinally loads and restraints. The extended classical finite snip method proposed in the current study is not restricted in this fashion. It can treat arbitrary end support conditions, arbitrary longitudinal loads and restraints, and uses a decoupled harmonic series. Longitudinal loads and restraints are modelled by expanding the harmonic series of the classical method to include a longitudinal rigid body motion of the strips as well as a uniform longitudinal displacement of each joint. When longitudinal loads are not in equilibrium on each joint, it is shown that the classical finite strip method cannot be used. Care must in particular be exercised for some unsymmetrical prestressing tendons for which the classical method can predict incorrect results. Arbitrary end support conditions are included by means of a Lagrange multiplier procedure, according to which the boundary conditions are stated and added into the potential energy functional. The expanded harmonic series discussed above is used, and acceleration techniques are outlined for improving convergence. For several large-scale examples, results yielded by the extended method, by curved beam theory, and by a finite element program are compared, illustrating that the extended method provides highly accurate values in an efficient manner.
机译:如果结构在末端仅得到支撑,如果弯曲和隔膜等约束不施加纵向约束,并且纵向载荷处于平衡状态,则经典的有限条形方法可以处理线弹性棱柱形折叠板结构。因为它使用一系列解耦的纵向基函数,允许求解一系列相对较小的谐波刚度,而不是较大的组合谐波刚度,因此该方法非常有效。已经提出了许多解决方案来消除上述限制。其中一些允许非简单的端部支撑,但没有一个对一般折叠板结构采用解耦谐波级数;此外,没有一个可以处理纵向载荷和约束。当前研究中提出的扩展经典有限剪法不受这种方式的限制。它可以处理任意端部支座条件、任意纵向载荷和约束,并使用解耦谐波级数。纵向载荷和约束是通过扩展经典方法的谐波级数来建模的,以包括条带的纵向刚体运动以及每个关节的均匀纵向位移。当纵向载荷在每个关节上不平衡时,表明不能使用经典的有限条带法。尤其要注意一些不对称的预应力筋,经典方法可以预测错误的结果。通过拉格朗日乘子程序包含任意端部支座条件,根据该程序,边界条件被陈述并添加到势能泛函中。使用了上面讨论的扩展谐波级数,并概述了提高收敛性的加速技术。对于几个大尺度示例,比较了扩展方法、曲梁理论和有限元程序得出的结果,表明扩展方法以高效的方式提供了高度准确的值。

著录项

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Civil engineering.;Mechanical engineering.
  • 学位
  • 年度 1989
  • 页码 313
  • 总页数 313
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Civil engineering.; Mechanical engineering.;

    机译:土木工程。;机械工程。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号