首页> 外文学位 >Entropy Optimization of an Additively Manufactured Heat Exchanger with a Dual Stage Gifford-McMahon Cryogenic Refrigerator for Hydrogen Liquefaction
【24h】

Entropy Optimization of an Additively Manufactured Heat Exchanger with a Dual Stage Gifford-McMahon Cryogenic Refrigerator for Hydrogen Liquefaction

机译:双级 Gifford-McMahon 氢气液化低温制冷机增材制造换热器的熵优化

获取原文
获取原文并翻译 | 示例

摘要

Small-scale hydrogen liquefaction presents an opportunity to drive down market costs by eliminating the cost associated with transportation. With the decline of fossil fuels and other nonrenewable energy sources, billions of dollars are being invested in large-scale hydrogen liquefaction. Large-scale systems have higher efficiencies, but limit accessibility. Little research has been done to optimize small-scale systems, and the presented options are often not scalable beyond a laboratory setting. The most inefficient system components are the heat exchanger, the nitrogen refrigerator, and the cycle compressor. In this thesis a novel, scalable, heat exchanger design based on principles of entropy minimization is presented. The design utilizes a branching structure with exponentially varying wall thickness and mounts onto a Gifford-McMahon cryogenic refrigerator. Numerical optimization indicates an efficiency increase of 39.21% when compared to a single tube design. The thermal mass is decreased by 43.82% and the length of the optimized design is only 8.61% of that of the single tube design. The heat exchanger is additively manufactured with an aluminum alloy and the interior is coated with a ruthenium-based catalyst to facilitate the ortho-parahydrogen conversion. Hydrogen enters the heat exchanger at 293 K and 653 kPa. It is cooled to 28.1 K and full ortho-parahydrogen conversion is assumed prior to reaching the storage dewar. The experimental measured rate of liquefaction is determined to be 0.003535 g/s, the upper flange of the heat exchanger resides at 58.0523 K, and the lower flange resides at 26.1631 K. The temperature difference between the lower flange of the heat exchanger and outlet fluid flow is less than 0.5 K. The mass flow rate and operating temperatures are lower than predicted. This is likely due to poor thermal properties of the heat exchanger material and poor thermal contact between the heat exchanger and the cryogenic refrigerator. However, the small temperature difference suggests small temperature gradients within the system, indicating minimum entropy generation. Suggestions are given to improve system performance.
机译:小规模氢液化提供了一个机会,可以通过消除与运输相关的成本来降低市场成本。随着化石燃料和其他不可再生能源的衰落,数十亿美元被投资于大规模氢液化。大型系统效率更高,但限制了可访问性。很少有研究来优化小规模系统,并且所提供的选项通常无法扩展到实验室设置之外。效率最低的系统组件是热交换器、氮气制冷机和循环压缩机。在本论文中,提出了一种基于熵最小化原理的新型、可扩展的换热器设计。该设计采用壁厚呈指数变化的分支结构,并安装在 Gifford-McMahon 低温制冷机上。数值优化表明,与单管设计相比,效率提高了 39.21%。优化后的热质量降低了 43.82%,长度仅为单管设计的 8.61%。热交换器采用铝合金增材制造,内部涂有钌基催化剂,以促进邻位对氢转化。氢气以 293 K 和 653 kPa 进入换热器。它被冷却到 28.1 K,并在到达储存杜瓦瓶之前假设完全邻位对氢转换。实验测量的液化速率确定为 0.003535 g/s,换热器的上法兰位于 58.0523 K,下法兰位于 26.1631 K。换热器下法兰与出口流体流量之间的温差小于 0.5 K。质量流量和工作温度低于预期值。这可能是由于换热器材料的热性能不佳以及换热器和低温制冷机之间的热接触不良。然而,较小的温差表明系统内的温度梯度较小,表明熵的产生最小。给出了提高系统性能的建议。

著录项

  • 作者

    Raymond, Jordan Alyse.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Engineering.
  • 学位
  • 年度 2021
  • 页码 172
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Engineering.;

    机译:工程。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号