首页> 外文学位 >The Merits of Keeping It Smooth: Iterative Linear Solvers and a Smooth Exact Penalty Function for Constrained Nonlinear Optimization
【24h】

The Merits of Keeping It Smooth: Iterative Linear Solvers and a Smooth Exact Penalty Function for Constrained Nonlinear Optimization

机译:保持平滑的优点:迭代线性求解器和用于约束非线性优化的平滑精确罚函数

获取原文
获取原文并翻译 | 示例

摘要

Part 1 involves iterative methods for solving linear systems, least-squares problems, and least-norm problems. We show that solution error bounds at each iteration of these methods can be computed efficiently provided certain additional spectral information of the linear operators involved. Part 2 develops a smooth exact penalty method for constrained nonlinear optimization based on the work of Fletcher (1970, 1973b), where the methods of Part 1 play a central role in evaluating the penalty function and its gradients.Often the most computationally intensive operation in numerical methods is solving linear systems, least-squares, and least-norm problems. Further, these linear systems often do not need to be solved to high accuracy---many methods can accept solutions solved to a prescribed accuracy. For positive definite systems, Part 1 develops Euclidean-norm error bounds for the Krylov methods SYMMLQ and CG using Gauss-Radau quadrature, when provided an underestimate of the smallest eigenvalue. For least-squares and least-norm problems, we develop solvers LSLQ and LNLQ (equivalent to SYMMLQ applied to the associated normal equations) and extend the error-bounding procedure for SYMMLQ to LSLQ and LNLQ. Similarly, the error-bounding procedure for CG is extended to LSQR and CRAIG. We compare with existing approaches for bounding errors, using linear systems from a standard test set and from the penalty method of Part 2. Our approach is remarkably tight for the LQ methods (when good estimates of the spectrum are available), and gives reliable bounds for the CG-based methods.In Part 2, we develop a general constrained nonlinear optimization algorithm based on a smooth penalty function proposed by Fletcher (1970, 1973b). We first present the penalty function for equality-constrained problems, then provide a new smooth extension to inequality constrained problems. Although it was historically considered to be computationally prohibitive in practice, we demonstrate that the computational kernels required are no more expensive than other widely accepted methods for nonlinear optimization. The main computational kernel required to evaluate the penalty function and its derivatives is solving a structured linear system. This system can be solved efficiently by storing a single factorization per iteration. Alternatively, we can adapt the penalty function to the class of factorization-free algorithms by solving the linear system iteratively, using for example the methods described in Part 1. The penalty function shows particular promise in cases where such linear system can be solved efficiently, e.g., for PDE-constrained optimization problems where efficient preconditioners exist, and opens the door to optimization solvers that accept inexact evaluations and derivatives. We discuss extensions including handling simple constraints explicitly, regularizing the penalty function, and demonstrate the merits of this approach on nonlinear optimization problems with PDE-constraints, and those from a standard test set.
机译:第 1 部分涉及求解线性系统、最小二乘问题和最小范数问题的迭代方法。我们表明,只要所涉及的线性算子的某些附加光谱信息,就可以有效地计算这些方法每次迭代的解误差边界。第 2 部分基于 Fletcher (1970, 1973b) 的工作开发了一种用于约束非线性优化的平滑精确惩罚方法,其中第 1 部分的方法在评估惩罚函数及其梯度方面起着核心作用。通常,数值方法中计算最密集的操作是求解线性系统、最小二乘和最小范数问题。此外,这些线性系统通常不需要以高精度求解---许多方法可以接受以规定精度求解的解。对于正定系统,第 1 部分在提供最小特征值的低估时,使用 Gauss-Radau 求积为 Krylov 方法 SYMMLQ 和 CG 开发了欧几里得范数误差边界。对于最小二乘和最小范数问题,我们开发了求解器 LSLQ 和 LNLQ(相当于应用于相关正态方程的 SYMMLQ),并将 SYMMLQ 的误差边界过程扩展到 LSLQ 和 LNLQ。同样,CG 的误差边界过程扩展到 LSQR 和 CRAIG。我们使用来自标准测试集的线性系统和第 2 部分的惩罚方法,与现有的边界误差方法进行了比较。我们的方法对于 LQ 方法非常严格(当有很好的频谱估计时),并为基于 CG 的方法提供了可靠的边界。在第 2 部分中,我们基于 Fletcher (1970, 1973b) 提出的平滑惩罚函数开发了一种通用的约束非线性优化算法。我们首先提出了等式约束问题的惩罚函数,然后为不等式约束问题提供了一个新的平滑扩展。尽管历史上认为在实践中计算上是禁止的,但我们证明所需的计算内核并不比其他广泛接受的非线性优化方法更昂贵。评估罚函数及其导数所需的主要计算内核是求解结构化线性系统。可以通过每次迭代存储单个因式分解来有效地解决该系统。或者,我们可以通过迭代求解线性系统来使罚函数适应无因式分解算法的类别,例如使用 Part 1 中描述的方法。在可以有效求解此类线性系统的情况下,例如,对于存在高效预条件器的 PDE 约束优化问题,penalty 函数显示出特别的前景,并为接受不精确计算和导数的优化求解器打开了大门。我们讨论了扩展,包括显式处理简单约束、正则化惩罚函数,并演示了这种方法在具有 PDE 约束的非线性优化问题以及来自标准测试集的非线性优化问题上的优点。

著录项

  • 作者

    Estrin, Ron.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Mathematics.
  • 学位
  • 年度 2019
  • 页码 147
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mathematics.;

    机译:数学。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号