首页> 外文学位 >Anomalous Detection System with Improved Deep Learning Training Method for Software Defined Networks
【24h】

Anomalous Detection System with Improved Deep Learning Training Method for Software Defined Networks

机译:基于改进的软件定义网络深度学习训练方法的异常检测系统

获取原文
获取原文并翻译 | 示例

摘要

The field of software defined networks (SDN) is paving the way for some of the most interesting and game changing ways we look at cybersecurity as it relates to Industry 4.0. Since an industrial IoT (IIoT) system is a cyber physical system that combines field-deployed devices as well as back-end Cloud Infrastructure, it presents a particularly large surface area for a cyber-attack. Recent advances now make it possible to use Deep Learning neural networks for both the controllability of a network and anomaly detection, as well as for real-time intrusion detection. The proposed architecture addresses some of the issues of distributed networks as well as the improvement on the training aspect of similar SDN deep learning models. The first method presents an algorithm that stretches a distributed IDS system from the edge layer to the device layer. This causes the device layer to utilize an IDS or ADS to determine irregular resource patterns for substantial malware detection or anomalous behavior analysis. The second method proposes using a Deep Convolutional Generative Adversarial Network (DCGAN) to improve the training and testing of a Convolutional Neural Network (CNN) by generating normal samples to balance the UNSW-NB15 network traffic dataset. The proposed scheme increases the precision of both the binary and the categorical classifications. The DCGAN solution increases the accuracy of the normal data by 4% and the overall recall by an additional 7%.
机译:软件定义网络 (SDN) 领域正在为我们看待与工业 4.0 相关的网络安全的一些最有趣和改变游戏规则的方式铺平道路。由于工业物联网 (IIoT) 系统是一种信息物理系统,它结合了现场部署的设备以及后端云基础设施,因此它为网络攻击提供了特别大的表面积。现在,最新的进展使得将深度学习神经网络用于网络的可控性和异常检测以及实时入侵检测成为可能。所提出的架构解决了分布式网络的一些问题,以及类似 SDN 深度学习模型在训练方面的改进。第一种方法提出了一种算法,该算法将分布式 IDS 系统从边缘层延伸到设备层。这会导致设备层利用 IDS 或 ADS 来确定不规则的资源模式,以进行大量恶意软件检测或异常行为分析。第二种方法建议使用深度卷积生成对抗网络 (DCGAN),通过生成正常样本来平衡 UNSW-NB15 网络流量数据集,从而改进卷积神经网络 (CNN) 的训练和测试。所提出的方案提高了二元分类和分类的精度。DCGAN 解决方案将正常数据的准确性提高了 4%,并将总体召回率提高了 7%。

著录项

  • 作者

    Everett, Kyle.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Computer engineering.;Computer science.;Artificial intelligence.
  • 学位
  • 年度 2020
  • 页码 71
  • 总页数 71
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computer engineering.; Computer science.; Artificial intelligence.;

    机译:计算机工程。;计算机科学。;人工智能。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号