首页> 外文学位 >Risk Budgeting Portfolios Under a Modern Optimization and Machine Learning Lens
【24h】

Risk Budgeting Portfolios Under a Modern Optimization and Machine Learning Lens

机译:现代优化和机器学习视角下的风险预算投资组合

获取原文
获取原文并翻译 | 示例

摘要

The mean-variance optimization framework has been the traditional approach to decide portfolio allocations based on return-risk trade-offs. However, it faces practical drawbacks, including sensitivity to estimated input parameters and concentration of portfolio risk. Risk budgeting portfolio optimization is a popular risk-based asset allocation technique where risk budgets are assigned to each assets' risk contribution, and equalizing all risk budgets in the portfolio is known as risk parity strategy. Unlike mean-variance, the risk parity strategy provides a balanced risk concentration in the portfolio and does not require expected asset return estimates as input. However, its performance can depend on the selected asset universe. Furthermore, its mathematical formulation imposes some computational challenges due to the non-convex structure.In this thesis, the risk budgeting problem is studied with modern optimization and machine learning approaches to enhance the portfolio model and address the aforementioned challenges. The second chapter introduces regime-switching risk parity portfolios with two primary components: regime modeling and prediction with supervised learning methods and identifying a regime-based strategy to improve the performance of a nominal risk parity portfolio. In the third chapter, we formulate a multi-period risk parity portfolio optimization problem in a transaction cost environment with a model predictive control approach. We provide a successive convex program algorithm that provides faster and more robust solutions. Lastly, we present an end-to-end portfolio allocation method by embedding the risk budget optimization problem as an implicit layer in a neural network. This approach combines prediction and optimization tasks in a single decision-making pipeline and constructs dynamic risk budgeting portfolios. Furthermore, we introduce a novel asset selection property with stochastic gates that protects the risk budgeting portfolio against the unprofitable assets.
机译:均值-方差优化框架一直是根据回报-风险权衡来决定投资组合分配的传统方法。然而,它面临着实际的缺点,包括对估计的输入参数的敏感性和投资组合风险的集中度。风险预算投资组合优化是一种流行的基于风险的资产配置技术,其中风险预算分配给每项资产的风险贡献,均衡投资组合中的所有风险预算称为风险平价策略。与均值方差不同,风险平价策略在投资组合中提供平衡的风险集中,并且不需要预期资产回报估计作为输入。但是,其性能可能取决于所选的资产域。此外,由于非凸结构,它的数学公式带来了一些计算挑战。在本论文中,使用现代优化和机器学习方法研究风险预算问题,以增强投资组合模型并解决上述挑战。第二章介绍了制度转换风险平价投资组合,包括两个主要组成部分:使用监督学习方法进行制度建模和预测,以及确定基于制度的策略以提高名义风险平价投资组合的表现。在第三章中,我们用模型预测控制方法在交易成本环境中制定了一个多期风险平价投资组合优化问题。我们提供了一种连续的凸规划算法,可提供更快、更健壮的解决方案。最后,我们提出了一种端到端的投资组合分配方法,通过将风险预算优化问题作为隐式层嵌入神经网络中。这种方法将预测和优化任务合并到单个决策管道中,并构建动态风险预算组合。此外,我们引入了一种带有随机门的新型资产选择属性,可以保护风险预算投资组合免受无利可图资产的影响。

著录项

  • 作者

    Uysal, Ay?e Sinem.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Operations research.;Finance.;Artificial intelligence.
  • 学位
  • 年度 2021
  • 页码 166
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Operations research.; Finance.; Artificial intelligence.;

    机译:运筹学。;财务。;人工智能。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号