首页> 外文学位 >Development of Integration Techniques for Semiempirical Quantum Chemistry Methods and Density Functional Theory
【24h】

Development of Integration Techniques for Semiempirical Quantum Chemistry Methods and Density Functional Theory

机译:半经验量子化学方法和密度泛函理论积分技术的发展

获取原文
获取原文并翻译 | 示例

摘要

The focus of this dissertation research has been on technical improvements to computational quantum chemistry methods. Integration grids for evaluating the numerical exchange-correlation (XC) integrals in density functional theory (DFT) were developed, which improved upon the numerical stability of the currently-used Lebedev grids. A recursive 2-center integration technique was developed for semiempirical quantum chemistry methods, particularly the density functional tight binding (DFTB) method. This allows for all needed 2-center integrals and integral-derivatives to be evaluated during runtime of the code, allowing better flexibility and transferability compared to pre-tabulated integrals (i.e. the Slater-Koster tables for DFTB) without a significant increase in computational cost. In the process of searching for 4-index 2-center integral formulas, a closed-form method of approaching molecular integral evaluation was developed based on Fourier Transform Cartesian Separation (FTCS). Basic semiempirical quantum chemistry methods were implemented as a proof for the 2-center integral techniques and were tested for their ability to optimize molecular geometries. Due to the unimpressive performance of the extended-Hückel type methods chosen, we worked towards a systemic investigation of the errors of semiempirical approximations. Towards this goal, an atomic Kohn-Sham program was developed to determine atomic densities, orbitals, and potentials. The program utilized numerical orbitals and a novel high order difference approximation to almost exactly solve the Schr?dinger equation numerically. The general 2-center integral techniques and the technique for determining numerical orbitals may prove to be useful elements for the development of future semiempirical quantum chemistry methods.
机译:本论文研究的重点是计算量子化学方法的技术改进。开发了用于评估密度泛函论 (DFT) 中数值交换相关 (XC) 积分的积分网格,它改进了当前使用的 Lebedev 网格的数值稳定性。为半经验量子化学方法开发了一种递归 2 中心积分技术,特别是密度泛函紧密结合 (DFTB) 方法。这允许在代码运行期间评估所有需要的 2 中心积分和积分导数,与预先制表的积分(即 DFTB 的 Slater-Koster 表)相比,具有更好的灵活性和可转移性,而不会显着增加计算成本。在寻找 4 指数 2 中心积分公式的过程中,开发了一种基于傅里叶变换笛卡尔分离 (FTCS) 的分子积分评价的封闭式方法。基本的半经验量子化学方法被实施为 2 中心积分技术的证明,并测试了它们优化分子几何形状的能力。由于所选择的扩展 Hückel 类型方法的性能不令人印象深刻,我们致力于对半经验近似的误差进行系统研究。为了实现这一目标,开发了一个原子 Kohn-Sham 程序来确定原子密度、轨道和电位。该程序利用数值轨道和新颖的高阶差分近似来几乎精确地以数值方式求解薛定谔方程。一般的 2 中心积分技术和确定数值轨道的技术可能被证明是未来半经验量子化学方法发展的有用元素。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号