首页> 外文学位 >Modeling Efforts for Improved Meal Prediction with Application to Blood Glucose Control
【24h】

Modeling Efforts for Improved Meal Prediction with Application to Blood Glucose Control

机译:改进膳食预测的建模工作并应用于血糖控制

获取原文
获取原文并翻译 | 示例

摘要

Type 1 Diabetes Mellitus is a disease characterized by the loss of insulin production from beta cells in the pancreas, which results in unregulated blood glucose (BG). The condition is permanent, exacting a high toll on an individual in terms of both health outcomes and treatment burden. Acute risk of low BG includes coma, seizure, and death, while longer term risk of high BG includes damage to the circulatory and nervous systems. To mitigate the risk of both ends, individuals must constantly stay vigilant, regulating BG levels with insulin injections and constantly monitoring BG levels.The artificial pancreas aims to reduce both health and treatment burdens by automatic regulation of BG levels. It consists of an insulin pump that injects insulin, a continuous glucose monitor that provides BG measurements, and a control algorithm that calculates dosing decisions. The next step in the development of artificial pancreas systems is fully closed loop control around meals. Unannounced meals present a challenge for the control algorithm because of the uncertainty surrounding the presence and content of the meal in addition to the slow and irreversible action of insulin paired with the acute risk of low BG.We propose a meal model, developed on gold standard triple tracer data, that considers meal size and shape and explicitly estimates uncertainty within meals. To quantify the quality of prediction in the context of BG control, we propose a new metric that considers asymmetry of prediction error and assesses prediction distributions in addition to single point predictions. Using the proposed metric, we tune an extended version of the model on a large data-set of free-living patient data and compare to previous work.The proposed model is first compared against three simpler models using triple tracer meal data. Prediction root mean square error is improved by 11% relative to the next best non-linear model. A simple implementation of control for all models suggests improved control capability for the proposed model: the proposed model is the fastest to compensate for a meal in 4 out of 6 cases and overcompensates the least (8% excess) in the worst case compared to other models (25% excess). The model is also validated on a large data-set by evaluating prediction capability and control performance. The proposed model improves predictions by 37% relative to previous work in terms of the proposed metric. In a retrospective simulation of control, the proposed model reduces clinical risk by 12% over previous work.An open source artificial pancreas system currently in use by many is Loop. Part of the presented work is an effort to introduce Loop into the control literature. We formulate the Loop control algorithm as a "coincidence point" model predictive control strategy paired with a linear state space model. We evaluate Loop in silico using error-prone scenarios and suggest improvements that can be made to the meal announcement functionality.
机译:1 型糖尿病是一种以胰腺中 β 细胞产生的胰岛素减少为特征的疾病,这会导致血糖 (BG) 不受调节。这种情况是永久性的,在健康结果和治疗负担方面对个人造成了很高的损失。低血糖的急性风险包括昏迷、癫痫发作和死亡,而高血糖的长期风险包括对循环系统和神经系统的损害。为了降低两端的风险,个人必须时刻保持警惕,通过注射胰岛素调节血糖水平并不断监测血糖水平。人工胰腺旨在通过自动调节血糖水平来减轻健康和治疗负担。它由一个注射胰岛素的胰岛素泵、一个提供 BG 测量的连续血糖监测仪和一个计算剂量决策的控制算法组成。人工胰腺系统开发的下一步是围绕膳食的完全闭环控制。突击餐对控制算法提出了挑战,因为除了胰岛素的缓慢且不可逆的作用以及低血糖的急性风险外,餐食的存在和内容存在不确定性。我们提出了一个基于黄金标准三重示踪剂数据开发的膳食模型,该模型考虑了膳食的大小和形状,并明确估计了膳食中的不确定性。为了量化 BG 控制背景下的预测质量,我们提出了一个新指标,该指标考虑了预测误差的不对称性,除了单点预测外,还评估了预测分布。使用提出的指标,我们在大量自由生活的患者数据上调整了模型的扩展版本,并与以前的工作进行了比较。首先,将所提出的模型与使用三重示踪剂膳食数据的三个更简单的模型进行了比较。相对于次优非线性模型,预测均方根误差提高了 11%。对所有模型进行控制的简单实施表明所提出的模型具有更好的控制能力:与其他模型相比,所提出的模型在 6 种情况下有 4 种情况下是最快的膳食补偿,在最坏情况下过度补偿最少(8% 超额)(25% 超额)。该模型还通过评估预测能力和控制性能在大型数据集上进行了验证。就拟议的指标而言,与以前的工作相比,拟议的模型将预测提高了 37%。在对照的回顾性模拟中,所提出的模型比以前的工作降低了 12% 的临床风险。目前许多人使用的开源人工胰腺系统是 Loop。所介绍的工作的一部分是将 Loop 引入控制文献的努力。我们将 Loop 控制算法表述为 “重合点” 模型预测控制策略,并与线性状态空间模型配对。我们使用容易出错的场景在计算机中评估 Loop,并提出可以对膳食广播功能进行的改进。

著录项

  • 作者

    Diamond, Travis.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

    Rensselaer Polytechnic Institute.;

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;Rensselaer Polytechnic Institute.;Rensselaer Polytechnic Institute.;
  • 学科 Chemical engineering.
  • 学位
  • 年度 2022
  • 页码 147
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Chemical engineering.;

    机译:化学工程。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号