首页> 外文学位 >Utilizing Robust Statistical Methods for Maximum Likelihood Estimation in Clinical Informatics for Obstetrics Research in the Community Hospital Setting
【24h】

Utilizing Robust Statistical Methods for Maximum Likelihood Estimation in Clinical Informatics for Obstetrics Research in the Community Hospital Setting

机译:利用稳健的统计方法在社区医院环境中进行产科研究的临床信息学中的最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

BACKGROUND:Research in the field of obstetrics can be very challenging because the nature of studying treatments and interventions in pregnancy patients poses several ethical and practical limitations. Pregnancy research in the community hospital setting provides unique challenges but so too provides much needed answers to niche clinical problems, necessitating understanding, development, and implementation of statistical methods that are best suited to this scenario.OBJECTIVE:The objective of this dissertation is to provide a solution to these limitations by defining and implementing a statistical framework utilizing robust methods for conducting high-quality, practical research in the field of obstetrics and prove its effectiveness though original research with novel statistical methods.METHODS:Two prospective observational cohort studies were conducted: one evaluating antibiotic regimens in the management of preterm prelabor rupture of membranes and the other studying alternative antibiotic regimens for surgical prophylaxis for non-elective cesarean deliveries during the COVID-19 pandemic. The results of both studies were analyzed using robust statistical analysis to yield original results.RESULTS:The first study demonstrated a decreased risk was noted for the development of clinical chorioamnionitis (p=0.003), neonatal sepsis (p0.001), and postpartum endometritis (p=0.010) when comparing azithromycin to erythromycin regimens. Pregnancy latency by regimen was not significantly different (p=0.90). The second study demonstrated that patients receiving clarithromycin had significantly lower rates and a decreased risk of postpartum endometritis as compared to those who did not receive adjunct prophylaxis (p=0.034). When evaluating robust statistical methods, the recommended statistical analysis framework for generalized linear regression and survival analysis under these unique circumstances includes Welch two-sample t-tests for continuous variables, G-Test and Fischer's exact test for categorical variables, Quasi-likelihood Poisson regression with robust error variance, robust Cox proportional hazards model, Aalen-Johansen estimator with IJ variance for survival curve, and direct approach to adjusted survival curves.CONCLUSION:Utilizing this novel approach to statistical analysis as demonstrated by original research in this dissertation proposal for clinical research in high risk obstetrics in the community hospital setting may provide more accurate and appropriate results.
机译:背景: 产科领域的研究可能非常具有挑战性,因为研究妊娠患者治疗和干预的性质存在一些伦理和实践限制。社区医院环境中的妊娠研究提供了独特的挑战,但也为利基临床问题提供了急需的答案,需要理解、开发和实施最适合这种情况的统计方法。目的: 本论文的目的是通过定义和实施一个统计框架,利用稳健的方法在产科领域进行高质量、实用的研究,并通过新颖的统计方法进行原创研究来证明其有效性,从而为这些局限性提供解决方案。方法: 进行了两项前瞻性观察性队列研究:一项评估抗生素方案治疗未足月胎膜早破,另一项研究替代抗生素方案用于 COVID-19 大流行期间非选择性剖宫产的手术预防。使用稳健的统计分析对这两项研究的结果进行了分析,以产生原始结果。结果: 第一项研究表明,当比较阿奇霉素和红霉素方案时,临床绒毛膜羊膜炎 (p=0.003)、新生儿败血症 (p0.001) 和产后子宫内膜炎 (p=0.010) 的发生风险降低。不同方案的妊娠潜伏期差异无统计学意义(p=0.90)。第二项研究表明,与未接受辅助预防的患者相比,接受克拉霉素治疗的患者发生产后子宫内膜炎的发生率显著降低,风险降低(p=0.034)。在评估稳健统计方法时,推荐用于这些独特情况下的广义线性回归和生存分析的统计分析框架包括连续变量的 Welch 双样本 t 检验、分类变量的 G 检验和 Fischer 精确检验、具有鲁棒误差方差的准似然泊松回归、鲁棒 Cox 比例风险模型、具有生存曲线 IJ 方差的 Aalen-Johansen 估计器、 以及直接接近调整后的生存曲线。结论: 利用这种新的统计分析方法,如本论文提案中的原始研究所示,用于社区医院环境中高危产科的临床研究可能会提供更准确和适当的结果。

著录项

  • 作者

    Martingano, Daniel J. S.;

  • 作者单位

    Rutgers The State University of New Jersey, Rutgers School of Health Professions.;

  • 授予单位 Rutgers The State University of New Jersey, Rutgers School of Health Professions.;
  • 学科 Mathematics.;Biostatistics.;Bioinformatics.
  • 学位
  • 年度 2022
  • 页码 75
  • 总页数 75
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mathematics.; Biostatistics.; Bioinformatics.;

    机译:数学.;生物统计学。;生物信息学。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号