首页> 外文学位 >A Multi Sensor Approach to Botswana Sign Language Dataset With View of Addressing Occlusion
【24h】

A Multi Sensor Approach to Botswana Sign Language Dataset With View of Addressing Occlusion

机译:博茨瓦纳手语数据集的多传感器方法,具有解决遮挡问题的观点

获取原文
获取原文并翻译 | 示例

摘要

Automatic Sign Language Recognition (ASLR) helps with converting hand gestures to spoken language, therefore, enabling communication between those able to hear and those unable to hear. There is abundant research work on ASLR of British Sign Language and American Sign Language. However, Botswana Sign Language has received less attention at least in terms of computational representation leading to automatic sign language recognition which can be attributed to lack of a Botswana Sign Language dataset Sign Language Dataset. Work done on other languages is not always directly applicable to Botswana Sign Language because sign languages differ significantly from country to country. A dataset plays a pivotal role in sign language recognition pipeline. However, one of the major challenges researcher's encounter is accurately extracting hands and fingers of a signer when the hands or fingers are not in the field of view of the camera (Occlusion). Researchers have argued that using multiple sensors addresses occlusion better than using a single sensor. This study proposes an approach to developing a Botswana Sign Language dataset based on tracking data from the Microsoft's Kinect sensor and the leap motion controller. The feature sets from both devices are combined in order to improve recognition performance (especially when occlusion). Recognition is performed by Support Vector Machines (SVM) and K Nearest Neighbor (KNN). The resulting dataset consisted of five thousand four hundred and thirty-three (5433) Botswana Sign Language gestures comprised of five (5) different sign words. The experimental results obtained show that recognition performance improves when compared to using one device to capture sign gestures. An overall recognition accuracy of 99.90% and 99.40% have been recorded using SVM and KNN respectively. 
机译:自动手语识别 (ASLR) 有助于将手势转换为口语,从而实现能够听到和无法听到的人之间的交流。关于英国手语和美国手语的 ASLR 有大量的研究工作。然而,博茨瓦纳手语至少在导致自动手语识别的计算表示方面受到的关注较少,这可以归因于缺乏博茨瓦纳手语数据集手语数据集。在其他语言上所做的工作并不总是直接适用于博茨瓦纳手语,因为手语因国家而异。数据集在手语识别管道中起着关键作用。然而,研究人员遇到的主要挑战之一是在手或手指不在相机的视野内时准确提取手语者的手和手指(遮挡)。研究人员认为,使用多个传感器比使用单个传感器更能解决遮挡问题。本研究提出了一种基于来自 Microsoft 的 Kinect 传感器和 leap 运动控制器的跟踪数据开发博茨瓦纳手语数据集的方法。将两个设备的功能集组合在一起,以提高识别性能(尤其是在遮挡时)。识别由支持向量机 (SVM) 和 K 最近邻 (KNN) 执行。生成的数据集由五千四百三十三 (5433) 个博茨瓦纳手语手势组成,由五 (5) 个不同的手语单词组成。获得的实验结果表明,与使用一台设备捕获手语手势相比,识别性能有所提高。使用 SVM 和 KNN 分别记录了 99.90% 和 99.40% 的总体识别准确率。

著录项

  • 作者

    Madise, Kabelo Germanus.;

  • 作者单位

    Botswana International University of Science & Technology (Botswana).;

  • 授予单位 Botswana International University of Science & Technology (Botswana).;
  • 学科 Computer science.;Information technology.
  • 学位
  • 年度 2020
  • 页码 81
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computer science.; Information technology.;

    机译:计算机科学。;信息技术。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号