首页> 外文学位 >Scalable Manufacturing of Soft and Stretchable Liquid-Metal-Based Circuits with Integrated Packaged Microelectronics
【24h】

Scalable Manufacturing of Soft and Stretchable Liquid-Metal-Based Circuits with Integrated Packaged Microelectronics

机译:具有集成封装微电子的柔性和可拉伸液态金属基电路的可扩展制造

获取原文
获取原文并翻译 | 示例

摘要

Soft and stretchable electronics (SSEs) have recently drawn considerable attention as an alternative for conventional rigid electronic devices when physical interaction with biological tissue and delicate objects is needed, such as for wearable computing, implantable electronics, and soft robotics. Unlike their rigid counterparts, SSEs can allow large amounts of bending, stretching, and other modes of deformation (e.g., 40% or more strains) without losing functionality. Furthermore, SSEs could be designed to have a similar elasticity as that of natural biological tissues, and can be integrated into clothing or mounted on the skin without constraining natural body motion. An emerging approach for realizing SSEs is to create micro-scale traces of a liquid metal (LM), a metal that is liquid at the room temperature, embedded in a soft elastomeric matrix. The prevailing liquid metals used in these devices include the room temperature binary liquid metal alloy of gallium and indium (i.e., eutectic Gallium-Indium, EGaIn) and ternary liquid metal alloy of Gallium-Indium-Tin (Galinstan). These alloys provide high conductivity, non-toxicity, and processability (moldability and printability) at the micron-scale. Since LM alloys can flow inside channels, LM-based circuits can preserve their elastic properties and electrical conductivity even at large deformations (up to 800%). Hence, LM-based SSEs offer a unique combination of metallic electrical conductivity and extreme stretchability.Although this exciting and impactful promise of LM-based soft electronics has been well recognized, their commercialization has not yet been realized due to the lack of viable techniques for their high-throughput manufacturing. Commercially viable mass manufacturing of LM-based soft electronics require: (1) scalable, reproducible, and precise LM patterning techniques to create stretchable interconnects, analog sensors, passive circuit elements and antennas with consistent electrical performance, and (2) effective interfacing of packaged microelectronics (i.e., IC chips) with liquid gallium alloys to enable a wide variety of on-board sensing modalities and digital processing. To address these challenges, the overarching objective of this Ph.D. research is to develop, evaluate and characterize techniques for scalable, precise and reproducible manufacturing of LM-based soft and stretchable electronics with integrated microelectronic components.To address the overarching research objective, first, the electrical connection and the electromechanical coupling between liquid metal interconnects and the packaged microelectronic component pins were experimentally investigated. To create an effective electrical and mechanical connection between EGaIn and packaged microelectronics, a novel hydrochloric acid (HCl) vapor treatment was developed. This technique was combined with a novel selective wetting-based LM patterning approach for rapid prototyping of LM-based SSEs. The applicability of this approach in creating LM circuits was demonstrated through fabrication and evaluation of demo circuits.Next, a novel technique for scalable, precise and reproducible manufacturing of LM-based SSEs with integrated microelectronic components was developed. The technique includes creating a nano-scale metal wetting layer using photolithography and wet etching, and deposition of EGaIn on the wetting layer through a novel LM deposition process, LM dip-coating. The feasibility of the overall approach was evaluated and the practical applicability of this method in creating functional SSE circuits was demonstrated through fabrication of demo circuits.Reproducible and controllable LM deposition is crucial to obtain the desired performance. To this end, an experimental investigation was conducted on the LM dip-coating process to examine the influence of process and wetting layer parameters on the resulting LM pattern geometries and their reproducibility for dip-coating. A design of exper
机译:当需要与生物组织和精密物体进行物理交互时,例如可穿戴计算、植入式电子产品和软机器人,软和可拉伸电子产品 (SSE) 作为传统刚性电子设备的替代品,最近引起了相当大的关注。与刚性 SSE 不同,SISE 可以允许大量弯曲、拉伸和其他变形模式(例如,40% 或更多的应变),而不会失去功能。此外,SSE 可以设计为具有与天然生物组织相似的弹性,并且可以整合到衣服中或安装在皮肤上,而不会限制自然的身体运动。实现 SSE 的一种新兴方法是创建液态金属 (LM) 的微尺度痕量,LM 是一种在室温下为液态的金属,嵌入柔软的弹性基质中。这些器件中使用的主要液态金属包括室温下的镓和铟的二元液态金属合金(即共晶镓-铟,EGaIn)和镓-铟-锡的三元液态金属合金(Galinstan)。这些合金在微米级提供高导电性、无毒性和可加工性(可塑性和可打印性)。由于 LM 合金可以在通道内流动,因此基于 LM 的电路即使在大变形(高达 800%)的情况下也能保持其弹性性能和导电性。因此,基于 LM 的 SSE 提供了金属导电性和极高拉伸性的独特组合。尽管基于 LM 的软电子器件的这一令人兴奋和有影响力的前景已得到广泛认可,但由于缺乏可行的高通量制造技术,其商业化尚未实现。基于 LM 的软电子在商业上可行的大规模制造需要:(1) 可扩展、可重复和精确的 LM 图案化技术,以创建具有一致电气性能的可拉伸互连、模拟传感器、无源电路元件和天线,以及 (2) 封装微电子(即 IC 芯片)与液态镓合金的有效接口,以实现各种板载传感模式和数字处理。为了应对这些挑战,这项博士研究的总体目标是开发、评估和表征具有集成微电子元件的基于 LM 的软和可拉伸电子产品的可扩展、精确和可重复制造的技术。为了实现总体研究目标,首先,实验研究了液态金属互连和封装微电子元件引脚之间的电气连接和机电耦合。为了在 EGaIn 和封装微电子之间建立有效的电气和机械连接,开发了一种新型盐酸 (HCl) 蒸汽处理。该技术与一种新的基于选择性润湿的 LM 图案化方法相结合,用于基于 LM 的 SSE 的快速原型设计。通过制造和评估演示电路,证明了这种方法在创建 LM 电路中的适用性。接下来,开发了一种新技术,用于可扩展、精确和可重复地制造具有集成微电子元件的基于 LM 的 SSE。该技术包括使用光刻和湿法蚀刻创建纳米级金属润湿层,以及通过一种新颖的 LM 沉积工艺 LM 浸涂将 EGaIn 沉积在润湿层上。评估了整体方法的可行性,并通过制造演示电路证明了该方法在创建功能性 SSE 电路方面的实际适用性。可重复和可控的 LM 沉积对于获得所需的性能至关重要。为此,对 LM 浸涂工艺进行了实验研究,以检查工艺和润湿层参数对所得 LM 图案几何形状及其浸涂可重复性的影响。Exper 的设计

著录项

  • 作者

    Ozutemiz, Kadri Bugra.;

  • 作者单位

    Carnegie Mellon University.;

    Carnegie Mellon University.;

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;Carnegie Mellon University.;Carnegie Mellon University.;
  • 学科 Engineering.;Mechanical engineering.;Materials science.
  • 学位
  • 年度 2020
  • 页码 152
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Engineering.; Mechanical engineering.; Materials science.;

    机译:工程。;机械工程。;材料科学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号