首页> 外文学位 >A Sub-Cycle Approach to Dynamic Phasors with Application to Dynamic Power Quality Metrics
【24h】

A Sub-Cycle Approach to Dynamic Phasors with Application to Dynamic Power Quality Metrics

机译:动态相量的子周期方法及其在动态电能质量指标中的应用

获取原文
获取原文并翻译 | 示例

摘要

Emerging energy conversion systems are characterized by increased rates and magnitudes of transients due to distributed generation, feedback-controlled loads and new entities like microgrids. A characterization of power quality in transients is thus gaining in importance in all power networks. Dynamic phasors offer a natural way to extend metrics based on steady state quantities such as phasor magnitude and RMS values to transients. The widespread use of high-bandwidth sensors enables a characterization of both steady-state and transient operation. However, the volume of so generated data is such that it necessitates extensive pre-processing and extraction of events of interest in estimation and control. An important issue then becomes how to pre-process that input data set, hoping to avoid excessive storage, communication and computation requirements. At the same time, the goal is to retain key benefits of fast sampling, such as the fast detection of events, and use in future wide-area and model-based protection algorithms. In this dissertation we introduce a fast sparse alternative to the standard (FFT-based) evaluation of dynamic phasors, which bridges the gap between single-waveform-sample methods (such as Akagi's instantaneous power theory), and the standard approach, which requires a full-cycle of waveform data. Our "sub-cycle" approach utilizes a small number of waveform samples (as few as two samples) to evaluate a few dominant harmonics, in contrast to full-cycle processing, which evaluates all harmonics, regardless of their magnitude. The sub-cycle approach provides a flexible trade-off between computational cost, which increases with the number of time-domain samples used, and the attendant improvement in the resulting dynamic power quality metrics. We propose to use it to generate a dynamic decomposition of apparent power into physically-meaningful components, based on power quality metrics that are defined entirely in terms of dynamic sub-cycle phasors. This dynamic power decomposition captures transient behavior, and reduces to constant components in steady-state. Thus, the sub-cycle approach provides a platform that can be used to monitor transient and steady state behavior of faulted systems when detection speed is critical. It can be integrated with algorithmic (intelligent) monitoring systems to provide faster system-level protection. We expect a good performance in applications where the presence of harmonics serves the role of a fault signature, including diagnostics of components (drives and converters), forensics of energy grids, and disturbance source localization.
机译:新兴能源转换系统的特点是由于分布式发电、反馈控制负载和微电网等新实体而导致的瞬态速率和幅度增加。因此,瞬态电能质量的表征在所有电力网络中都变得越来越重要。动态相量提供了一种自然的方法,可以将基于稳态量(如相量幅度和 RMS 值)的指标扩展到瞬态。高带宽传感器的广泛使用能够表征稳态和瞬态操作。然而,如此生成的数据量如此之大,以至于需要对估计和控制中感兴趣的事件进行大量的预处理和提取。然后,一个重要的问题变成了如何预处理该 Importing 数据集,以期避免过多的存储、通信和计算要求。同时,目标是保留快速采样的关键优势,例如快速检测事件,并用于未来的广域和基于模型的保护算法。在本论文中,我们介绍了一种快速稀疏的替代动态相量的标准(基于 FFT)评估方法,它弥合了单波形采样方法(例如 Akagi 的瞬时功率理论)与标准方法之间的差距,后者需要完整的波形数据周期。我们的 “sub-cycle” 方法利用少量波形样本(最少两个样本)来评估一些主要谐波,而全周期处理则评估所有谐波,而不管其幅度如何。子周期方法在计算成本(随着使用的时域样本数量而增加)与随之而来的动态电能质量指标的改进之间提供了灵活的权衡。我们建议使用它来生成视在功率中具有物理意义的分量的动态分解,基于完全根据动态子周期相量定义的电能质量指标。这种动态功率分解捕获瞬态行为,并简化为稳态下的常数分量。因此,子周期方法提供了一个平台,可用于在检测速度至关重要时监控故障系统的瞬态和稳态行为。它可以与算法 (智能) 监控系统集成,以提供更快的系统级保护。我们期望在谐波的存在起到故障特征作用的应用中具有良好的性能,包括组件(驱动器和转换器)的诊断、能源网的取证和干扰源定位。

著录项

  • 作者

    Ghanavati, Afsaneh.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Electrical engineering.
  • 学位
  • 年度 2018
  • 页码 173
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electrical engineering.;

    机译:电机工程。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号