首页> 外文学位 >Links of Climate Variability and Change with Regional Hydroclimate: Predictability, Trends, and Physical Mechanisms on Seasonal to Decadal Scales
【24h】

Links of Climate Variability and Change with Regional Hydroclimate: Predictability, Trends, and Physical Mechanisms on Seasonal to Decadal Scales

机译:气候变率和变化与区域水文气候的联系:季节性到年代际尺度的可预测性、趋势和物理机制

获取原文
获取原文并翻译 | 示例

摘要

The mechanistic understanding and reliable prediction of regional hydroclimatic variability across scales remains a challenge, with important socioeconomic and environmental implications for many regions around the world. Despite the significant advances in earth system modeling during the recent decades, deterministic models show limited predictive skill of regional hydroclimate, mainly due to imperfect physical conceptualizations and inaccurate initial conditions. Statistical schemes that are based on empirically established climate teleconnections are not reliable due to the non-stationary nature of the system under climate change. In this dissertation, to gain physical insight on precipitation variability across scales, we explore a) the physical teleconnections and predictability of winter precipitation totals over the southwestern US (SWUS), and b) the future shifts in the position of the tropical rainbelt/intertropical convergence zone (ITCZ) in response to climate change. The hydroclimatic variability in these two cases is based on fundamentally different phenomena (mid latitude dynamics versus tropical circulation) and operates at largely different temporal scales (seasonal versus multidecadal timescales), thus offering great potential for physical insight and broadening the impact of this work. We present evidence that new modes of sea surface temperature variability over the southwestern Pacific have been robustly connected to SWUS precipitation over the past four decades, providing improved prediction skill compared to traditionally used indices. We suggest that the revealed connection materializes through a western Pacific pathway whereby temperature anomalies in the proximity of New Zealand propagate from the southern to the northern hemisphere during boreal summer and early fall. The importance of the revealed teleconnection and the skill of other predictive models in predicting extreme precipitation totals in SWUS is assessed via a new probabilistic framework that is also introduced in this work. Regarding the future response of the tropical rainbelt to climate change, we propose a new multivariate approach to track its position as a function of longitude, and by using state-of-the-art climate model outputs, we report a robust, zonally contrasting shift of the ITCZ with climate change. Specifically, we document that the ITCZ will shift northward over eastern Africa and the Indian Ocean, and southward in the eastern Pacific and Atlantic Oceans by 2100, for the SSP3-7.0 scenario. We find that the revealed ITCZ response is consistent with future changes in the divergent atmospheric energy transport over the tropics, and sector-mean shifts of the energy flux equator. The shifts in the energy flux equator appear to be the result of zonally contrasting imbalances in the interhemispheric atmospheric heating over the two sectors, consisting of increases in atmospheric heating over Eurasia and cooling over the Southern Ocean, which contrast with atmospheric cooling over the North Atlantic Ocean due to a model-projected weakening of the Atlantic meridional overturning circulation.The results of this dissertation highlight the need to understand the dynamic nature of the coupled ocean-atmosphere system and exploit climate information that goes beyond the traditionally used indices for improving future prediction skill of regional precipitation in a changing climate. Future research should focus on the development of new, data-driven methodologies that aim to integrate physics and machine learning, and predict seasonal precipitation variability in a setting where the predictors are not prescribed a priori, but rather emerge from the model fit to the data. For longer timescales (i.e. decadal and multi-decadal), our results provide new insights about the mechanisms that will influence the future position of the tropical rainbelt, and may allow for more robust projections of climate change impacts.
机译:对跨尺度区域水文气候变率的机制理解和可靠预测仍然是一个挑战,对世界上许多地区具有重要的社会经济和环境影响。尽管近几十年来地球系统建模取得了重大进展,但确定性模型对区域水文气候的预测能力有限,这主要是由于不完美的物理概念化和不准确的初始条件。由于系统在气候变化下的非平稳性质,基于经验建立的气候遥联系的统计方案并不可靠。在这篇论文中,为了获得对不同尺度降水变化的物理见解,我们探讨了 a) 美国西南部 (SWUS) 冬季降水总量的物理遥相关和可预测性,以及 b) 热带雨带/热带辐合带 (ITCZ) 位置的未来变化响应气候变化。在这两种情况下,水文气候变率是基于根本不同的现象(中纬度动力学与热带环流),并且在大不相同的时间尺度(季节与多年代际时间尺度)上运作,因此为物理洞察力提供了巨大的潜力,并扩大了这项工作的影响。我们提出的证据表明,在过去四十年中,西南太平洋海面温度变化的新模式与 SWUS 降水密切相关,与传统使用的指数相比,提供了更好的预测技能。我们认为,所揭示的联系是通过西太平洋途径实现的,即新西兰附近的温度异常在北方夏季和初秋期间从南半球传播到北半球。通过本研究中还引入了一个新的概率框架来评估所揭示的遥相关的重要性和其他预测模型在预测 SWUS 中极端降水总量方面的技能。关于热带雨带对气候变化的未来响应,我们提出了一种新的多变量方法来跟踪其位置与经度的函数关系,通过使用最先进的气候模型输出,我们报告了 ITCZ 与气候变化的稳健、纬向对比变化。具体来说,我们记录了到 2100 年,ITCZ 将在东非和印度洋上向北移动,在东太平洋和大西洋向南移动,对于 SSP3-7.0 情景。我们发现,揭示的 ITCZ 响应与热带地区发散大气能量传输的未来变化以及能量通量赤道的扇区平均偏移是一致的。能量通量赤道的变化似乎是两个区域半球间大气加热的纬向对比不平衡的结果,包括欧亚大陆上空的大气加热增加和南大洋上空的冷却,这与北大西洋上空的大气冷却形成鲜明对比,这是由于模型预测的大西洋经向翻转环流减弱造成的。本论文的结果强调了理解海洋-大气耦合系统的动态性质的必要性,并利用超越传统使用指数的气候信息来提高在变化的气候中区域降水的未来预测技能。未来的研究应侧重于开发新的数据驱动方法,旨在整合物理学和机器学习,并在预测因子不是先验规定而是从模型拟合数据中出现的环境中预测季节性降水变化。对于更长的时间尺度(即年代际和多年代际),我们的结果为影响热带雨带未来位置的机制提供了新的见解,并可能允许对气候变化影响进行更稳健的预测。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号