首页> 外文学位 >Investigation of in silico Modelling to Predict the Human Health Effects of Cosmetics Ingredients
【24h】

Investigation of in silico Modelling to Predict the Human Health Effects of Cosmetics Ingredients

机译:计算机模拟模型研究预测化妆品成分对人体健康的影响

获取原文
获取原文并翻译 | 示例

摘要

Animal experiments have been the standard method to assess the safety of chemicals used in cosmetic products for decades. However, public opinion has continued to demand that in vivo hazard identification methods conducted on animals are replaced with alternative methods. Research on alternative methods to replace in vivo toxicity testing continually increased over the past few decades with different alternatives developed, such as in vitro, in chemico and in silico approaches. Although different alternative techniques can be employed, no single technique can solely replace the complexity and an in vivo test, especially for chronic effects. Therefore, integrated testing strategies that can utilise the information from all available alternative testing approaches have been developed. Within the Adverse Outcome Pathway (AOP) paradigm, the molecular initiating event(s) MIE can be induced by several chemical key features which can be captured by structural alerts. When structural alerts for a MIE are compiled and supported by mechanistic and toxicity information confirming the induction of the same MIE, then they can be considered as an in silico profiler. The overall aim of the work presented in this thesis was to assess the current in silico profilers for carcinogenicity (both genotoxic and non-genotoxic), mutagenicity and skin sensitisation through assessment using multiple high-quality experimental databases. The research presented herein demonstrates the ability to assess the positive predictivity of two types of structural alert, mechanism- and chemistry-based that pertain to the endpoints and proposes ways to improve the overall accuracy of these profilers. In this context, this study has given an insight to those alerts that may be found equally in endpoint-positive or negative compounds, and those which may be more effectively utilised to form groups of analogues for read across predictions. A detailed analysis of positive predictivity of the available mutagenicity, carcinogenicity and skin sensitisation structural alerts and profilers Page 3 within the OECD QSAR Toolbox against experimental data is presented. This investigation showed the structural alerts that are accurate as such, and those that may need further refinement, or their use may need to be reconsidered. In addition, the relationship between scaffolds of a range of diverse compounds and carcinogenicity showed that a total of 17 carcinogenicity scaffolds could be identified from the available databases and could be used as a base for an in silico profiler.This work has also determined the need for further in-depth research in this area to study the suitability and merits of each of the alerts within the profilers currently included in the OECD QSAR Toolbox, and other in silico toxicity platforms, to identify the possibilities for improvement in their performance. This will, by implication, also improve the reliability of chemical read-across and grouping/categorisation for classification, labelling and risk assessment for regulatory use of the in silico methods.
机译:几十年来,动物实验一直是评估化妆品中使用的化学品安全性的标准方法。然而,公众舆论继续要求用替代方法取代对动物进行的体内危害鉴定方法。在过去的几十年里,随着不同的替代方案的开发,例如体外、化学和计算机方法,对替代体内毒性测试的替代方法的研究不断增加。尽管可以采用不同的替代技术,但没有一种技术可以单独取代复杂性和体内测试,尤其是对于慢性影响。因此,已经开发了可以利用所有可用替代测试方法的信息的综合测试策略。在不良结果途径 (AOP) 范式中,分子起始事件 MIE 可由几个化学关键特征诱导,这些特征可以通过结构警报捕获。当 MIE 的结构警报被编译并得到确认相同 MIE 诱导的机制和毒性信息的支持时,它们可以被视为计算机分析器。本论文中介绍的工作的总体目标是通过使用多个高质量实验数据库进行评估,评估当前计算机分析器的致癌性(遗传毒性和非遗传毒性)、致突变性和皮肤致敏性。本文介绍的研究证明了评估与终点相关的两种结构警报(基于机制和化学)的正预测性的能力,并提出了提高这些分析器整体准确性的方法。在这种情况下,本研究深入了解了那些可能在终点阳性或阴性化合物中同样存在的警报,以及那些可以更有效地用于形成类似物组以进行跨预测读取的警报。根据实验数据,对 OECD QSAR 工具箱中可用致突变性、致癌性和皮肤致敏结构警报和分析器的正预测性进行了详细分析,第 3 页。这项调查显示了结构警报本身是准确的,而那些可能需要进一步改进或可能需要重新考虑其使用。此外,一系列不同化合物的支架与致癌性之间的关系表明,从可用数据库中总共可以识别出 17 个致癌支架,并可用作计算机分析器的基础。这项工作还确定了在该领域进一步深入研究的必要性,以研究当前包含在 OECD QSAR Toolbox 和其他计算机毒性平台中的分析器中每个警报的适用性和优点,以确定改进其性能的可能性。这意味着,这也将提高化学交叉读取和分组/分类的可靠性,用于分类、标签和风险评估,以便监管使用计算机模拟方法。

著录项

  • 作者

    Aljallal, Mohammed.;

  • 作者单位

    Liverpool John Moores University (United Kingdom).;

  • 授予单位 Liverpool John Moores University (United Kingdom).;
  • 学科 Toxicology.
  • 学位
  • 年度 2019
  • 页码 242
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Toxicology.;

    机译:毒物学。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号