首页> 外文学位 >Computational Modeling of Electrochemical Systems for Energy Conversion Using Density Functional Theory and Many-Body Perturbation Theory
【24h】

Computational Modeling of Electrochemical Systems for Energy Conversion Using Density Functional Theory and Many-Body Perturbation Theory

机译:基于密度泛函理论和多体微扰理论的能量转换电化学系统计算建模

获取原文
获取原文并翻译 | 示例

摘要

Electrocatalysis plays a key role in sustainable energy conversion and storage. Although tremendous efforts from the experimental side have been devoted to elucidating the reaction mechanism, the detailed reaction pathways are still controversial due to intrinsic difficulty of in situ spectroscopy under electrochemical conditions. Therefore, computational studies based on density functional theory (DFT) energetics serve as an important tool to clarify the reaction mechanism. However, several aspects such as solvation effects and the electrochemical potential effects are important for the electrochemical systems while such effects are often absent in the simulations. Moreover, current DFT exchange correlation functionals present certain qualitative and quantitative errors, while the combination of solvation treatments and the more advanced computational methods are not established. To address these concerns, this thesis work on two different levels, stressing on incorporating the necessary effects to model the electrochemical processes. At the DFT level, we model the complicated sulfur reduction reaction process on heteroatom doped holey graphene framework. Specifically, we elucidate the electrocatalytic origin of the improved battery performance with these catalysts and decipher the complex 16-electron process. At the more advanced many-body perturbation theory (MBPT) level, we focus on the random phase approximation (RPA), as a promising approach to address certain DFT errors such as the carbon monoxide (CO) adsorption puzzle: the commonly used functionals give incorrect prediction of the CO adsorption site and energy on transition metal catalysts, which is key for several catalytic processes including the industrial catalysis for methanol synthesis from synthesis gas, the water-gas shift reaction, and the electrochemical carbon dioxide reduction reaction. Nevertheless, the cost of RPA for surface systems is often unaffordable, and the combination of RPA with implicit solvation and further the grand canonical treatment of electrons to describe the electrochemical potential, is generally not established. In this thesis, to pave the way to further electrochemical applications using RPA, we exploit a k-space extrapolation scheme to reduce the cost for surface calculations. Then we further combine the RPA framework for electrified interfaces, including implicit solvation described using the linearized Poisson-Boltzmann equation and the grand canonical treatment of electrons. We show that the RPA results are qualitatively and quantitatively different from commonly used functionals and match better with the experimental results.
机译:电催化在可持续能源转换和储存中起着关键作用。尽管实验方面已经付出了巨大的努力来阐明反应机理,但由于电化学条件下原位光谱的内在困难,详细的反应途径仍然存在争议。因此,基于密度泛函理论(DFT)能量学的计算研究是阐明反应机理的重要工具。然而,溶剂化效应和电化学势效应等几个方面对电化学体系很重要,而这些效应在模拟中通常不存在。此外,目前的DFT交换相关泛函存在一定的定性和定量误差,而溶剂化处理与更先进的计算方法的结合尚未建立。为了解决这些问题,本论文在两个不同的层面上工作,强调结合必要的效应来模拟电化学过程。在DFT水平上,我们模拟了杂原子掺杂的多孔石墨烯骨架上复杂的硫还原反应过程。具体来说,我们阐明了这些催化剂改善电池性能的电催化起源,并破译了复杂的16电子过程。在更先进的多体微扰理论(MBPT)水平上,我们专注于随机相近似(RPA),作为解决某些DFT误差(如一氧化碳(CO)吸附难题)的有前途的方法:常用的泛函对过渡金属催化剂上的CO吸附位点和能量给出了错误的预测,这是几种催化过程的关键,包括从合成气合成甲醇的工业催化, 水-气变换反应和电化学二氧化碳还原反应。然而,RPA在表面系统的成本通常是无法承受的,并且RPA与隐式溶剂化的结合以及进一步对电子进行大规范处理以描述电化学势,通常尚未建立。在这篇论文中,为了为使用RPA的进一步电化学应用铺平道路,我们利用k空间外推方案来降低表面计算的成本。然后,我们进一步结合了带电界面的RPA框架,包括使用线性泊松-玻尔兹曼方程描述的隐式溶剂化和电子的大规范处理。结果表明,RPA结果在质性和定量上与常用的函数存在差异,并且与实验结果的匹配性更好。

著录项

  • 作者

    Wei, Ziyang.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Computational chemistry.
  • 学位
  • 年度 2022
  • 页码 245
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computational chemistry.;

    机译:计算化学。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号