首页> 外文学位 >Raise Your Glass: A Culture Evaluation of Diatoms as Archives of Past Nutrient Consumption
【24h】

Raise Your Glass: A Culture Evaluation of Diatoms as Archives of Past Nutrient Consumption

机译:举起你的酒杯:硅藻的文化评价作为过去营养消耗的档案

获取原文
获取原文并翻译 | 示例

摘要

Nitrate is the most common limiting nutrient in the ocean and plays a critical role in the extent and intensity of marine primary production, and therefore the global ocean's biological pump. Characterization of the supply and demand of nitrate constrains how ocean biology may regulate climate, so understanding the degree of nitrate consumption in the past is a fundamental step towards understanding controls on past climate. The nitrogen isotopic composition (as δ15N) of phytoplankton biomass can be used to infer the degree of nitrate consumption in nitrate-replete surface waters such as the Southern Ocean. This signal is recorded in the underlying sediment and can be used to construct a history of nitrate utilization. However, δ15N values of phytoplankton biomass are subject to alteration during sinking and sedimentation, leading to uncertainty in estimations. The nitrogen isotopic composition of nitrogen within the shells of diatoms (δ15NDB), a photosynthetic microorganism, is protected from alteration and potentially a more robust tracer of past nitrate dynamics. However, this assumption may be complicated by species-specific isotope effects and the high variation in Southern Ocean diatom assemblages through climate transitions. The goals of this dissertation are twofold: first, to investigate the impact of different Southern Ocean diatom communities (Chapter 1) and individual species (Chapter 2) on the δ15NDB proxy and second, to use δ15NDB to examine paleo-nutrient utilization and oceanographic conditions of the coastal West Antarctic Peninsula (WAP), a region of high seasonal productivity and carbon drawdown (Chapter 3).Two distinct Southern Ocean surface ocean diatom communities were grown in triplicate cultures to determine the impact of diatom community composition on δ15NDB. We found that although the community growouts had distinct diatom assemblages, the εDB (= biomass δ15N - δ15NDB) was indistinguishable between the two growouts at -4.8 ± 0.8‰. This suggests that species composition is not the primary control on δ15NDB in the Southern Ocean. Furthermore, our measured average εDB was more than 10‰ different from the average value of previous single-species measurements, but consistent with Southern Ocean and North Pacific surface ocean observations. Therefore, if δ15NDB is not altered during sinking and sedimentation, then sedimentary δ15NDB is a robust tool for examining changes to nitrate supply and demand over time.Single-species cultures of diatoms isolated from the Southern Ocean were grown in triplicate to assess individual species εDB. We show that the average εDB is -2.2 ± 1.0‰, consistent with the Southern Ocean community data and surface ocean observations. We observe a positive linear relationship between εDB and the Si:N of diatom uptake, implying that silicification plays a role in setting δ15NDB. This relationship suggests that heavily silicified diatoms could bias sedimentary δ15NDB toward lower values. However, five of the six diatoms species had indistinguishable εDB from one another, indicating that the impact may be minimal in many cases.The coastal WAP hosts intense productivity fueled by the delivery of warm, nutrient rich Circumpolar Deep Water (CDW) and seasonal stratification related to sea-ice melting. Stronger Southern Hemisphere westerlies are thought to enhance CDW intrusion onto the WAP shelf and have increased in strength over at least the last four decades. Therefore, it is key to determine the historical variations in CDW, productivity, and westerly winds. These variations are especially relevant in the mid-Holocene, when CDW intrusion likely varied substantially, yet there is disagreement about the timing of CDW influence in paleoproxy records. We use δ15NDB to study the WAP by unambiguously linking past proxy descriptions of warm, sea-ice free intervals with the nutrient characteristics of CDW. We find that contrary to prior hypotheses, variations in the relationship between δ15ND
机译:硝酸盐是海洋中最常见的限制性营养物质,在海洋初级生产的范围和强度中起着关键作用,因此也是全球海洋的生物泵。硝酸盐供需的特征限制了海洋生物学如何调节气候,因此了解过去硝酸盐的消耗程度是了解过去气候控制的基本步骤。浮游植物生物量的氮同位素组成(以 δ15N 计)可用于推断南大洋等富含硝酸盐的表层水中硝酸盐消耗的程度。该信号记录在底层沉积物中,可用于构建硝酸盐利用的历史。然而,浮游植物生物量的 δ15N 值在下沉和沉积过程中会发生变化,导致估计的不确定性。硅藻壳内氮的氮同位素组成 (δ15NDB)(一种光合微生物)受到保护,不会发生变化,并且可能是过去硝酸盐动力学的更强大的示踪剂。然而,由于物种特异性同位素效应和气候转变过程中南大洋硅藻组合的高度变化,这一假设可能会变得复杂。本论文的目标有两个:首先,研究不同的南大洋硅藻群落(第 1 章)和单个物种(第 2 章)对 δ15NDB 代理的影响,其次,使用 δ15NDB 研究南极半岛西部沿海 (WAP) 的古营养利用和海洋学条件,这是一个具有高季节性生产力和碳吸收的地区(第 3 章)。在一式三份培养物中培养了两个不同的南大洋表层海洋硅藻群落,以确定硅藻群落组成对 δ15NDB 的影响。我们发现,尽管群落生长物具有不同的硅藻组合,但在 -4.8 ± 0.8‰ 处,两个生长物之间的 εDB (= 生物量 δ15N - δ15NDB) 无法区分。这表明物种组成并不是南大洋 δ15NDB 的主要控制因素。此外,我们测得的平均 εDB 与之前单一物种测量的平均值相差超过 10‰,但与南大洋和北太平洋表层海洋观测一致。因此,如果 δ15NDB 在下沉和沉积过程中没有改变,那么沉积物 δ15NDB 是检查硝酸盐供需随时间变化的可靠工具。从南大洋分离的硅藻的单一物种培养物一式三份生长,以评估单个物种 εDB。我们表明平均 εDB 为 -2.2 ± 1.0‰,与南大洋群落数据和表层海洋观测一致。我们观察到 εDB 与硅藻吸收的 Si:N 之间存在正线性关系,这意味着硅化在设置 δ15NDB 中起作用。这种关系表明,重硅化硅藻可能会使沉积 δ15NDB 偏向于较低的值。然而,六种硅藻中有五种具有无法区分的 εDB,这表明在许多情况下影响可能很小。沿海 WAP 拥有强大的生产力,由温暖、营养丰富的环极深水 (CDW) 和与海冰融化相关的季节性分层提供动力。更强的南半球西风被认为会增强 CDW 对 WAP 大陆架的入侵,并且至少在过去四十年中强度有所增加。因此,确定 CDW、生产力和西风的历史变化是关键。这些变化在全新世中期尤其相关,当时 CDW 侵入可能有很大差异,但对古代理记录中 CDW 影响的时间存在分歧。我们使用 δ15NDB 来研究 WAP,方法是将过去温暖、无海冰间隔的代理描述与 CDW 的营养特性明确联系起来。我们发现,与先前的假设相反,δ15ND

著录项

  • 作者

    Jones, Colin Anthony.;

  • 作者单位

    University of Rhode Island.;

    University of Rhode Island.;

    University of Rhode Island.;

  • 授予单位 University of Rhode Island.;University of Rhode Island.;University of Rhode Island.;
  • 学科 Paleoclimate science.;Biogeochemistry.
  • 学位
  • 年度 2020
  • 页码 122
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Paleoclimate science.; Biogeochemistry.;

    机译:古气候科学。;生物 地球化学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号