首页> 外文学位 >Computational Studies of Structure-Property Relations in Wide Bandgap Semiconductors
【24h】

Computational Studies of Structure-Property Relations in Wide Bandgap Semiconductors

机译:宽禁带半导体中结构-性能关系的计算研究

获取原文
获取原文并翻译 | 示例

摘要

This thesis reports on incorporating various computational methods and tools, including first-principles calculations, mesoscale modeling, stochastic modeling, and Artificial intelligence to study structure-property relations in wide bandgap semiconductors.In the first project, we present first-principles calculations that elucidate the growth mechanism of ZnO photocatalytic materials for water-splitting applications used in sustainable energy storage. Polar surfaces of ZnO are known to have higher photoelectrochemical activity increasing water splitting efficiency. However, they are known to be unstable and less probable to form under normal conditions. In this project, we demonstrate these high-energy surfaces could be stabilized under certain growth conditions. This approach suggests a general solution for controlling the growth morphology, and it can be applied to other compounds to tailor their structure and obtain materials that are not normally stable. Further, we present a comprehensive study of diamond-based systems for application in high-power and high-frequency electronic devices. This includes two major projects to find solutions for SD of diamond. the first project studies the possibility of using hexagonal Boron Nitride (hBN) and graphene 2D materials as acceptor or interface layer in diamondbased heterostructures. The second project reports modeling and analysis of amorphous vanadium pentoxide slabs as candidates for SD of diamond.Chapter six of this thesis introduces a novel AI-based approach to accelerate computational studies of molecule-surface (and molecule-molecule) interactions. To this end, we present an interactive method that couples Gaussian Processes, Bayesian Inference, and molecular dynamics simulations to accelerate the search for the minimum energy structure in molecule- surface interactions. This method addresses the problem of dealing with multiple configurations with similar energies. It enables making accurate predictions from relatively small datasets and quantifying the uncertainty associated with each prediction.The last chapter of this thesis introduces a Monte Carlo-based raytracing model, named LightCapture, that simulates light absorption in a microfluidic water-treatment reactor. The LightCapture model was developed to predict geometry - light interaction correlations in reactors consisting of micropillars. This is a critical step in determining the reactor's overall photocatalytic efficiency. To evaluate the performance, the model was applied to determine light capture efficiency in microreactors that use an array of TiO2 photocatalytic micropillars, which are being developed for treating recycled water on spacecraft during deep space missions, and the results were in great agreement with experimental tests.This thesis provides guiding principles for accelerated discovery of wide bandgap semiconductors. Many of the presented methods and tools have been successfully utilized to provide guiding principles for experimental fabrication.
机译:本论文报告了如何结合各种计算方法和工具,包括第一性原理计算、介尺度建模、随机建模和人工智能来研究宽带隙半导体中的结构-性质关系。在第一个项目中,我们提出了第一性原理计算,阐明了用于可持续能源存储的分解水应用的 ZnO 光催化材料的生长机制。已知 ZnO 的极性表面具有更高的光电化学活性,提高了分解水的效率。然而,众所周知,它们在正常条件下不稳定且不太可能形成。在这个项目中,我们证明了这些高能表面可以在一定的生长条件下保持稳定。这种方法提出了一种控制生长形态的通用解决方案,它可以应用于其他化合物以定制它们的结构并获得通常不稳定的材料。此外,我们还对金刚石基系统在高功率和高频电子设备中的应用进行了全面研究。这包括两个主要项目,以寻找金刚石 SD 的解决方案。第一个项目研究了在金刚石异质结构中使用六方氮化硼 (hBN) 和石墨烯 2D 材料作为受体或界面层的可能性。第二个项目报告了非晶态五氧化二钒板的建模和分析,作为金刚石 SD 的候选者。本论文的第六章介绍了一种基于 AI 的新型方法,以加速分子-表面(和分子-分子)相互作用的计算研究。为此,我们提出了一种耦合高斯过程、贝叶斯推理和分子动力学模拟的交互式方法,以加速寻找分子-表面相互作用中的最小能量结构。这种方法解决了处理具有相似能量的多个配置的问题。它能够从相对较小的数据集中做出准确的预测,并量化与每个预测相关的不确定性。本论文的最后一章介绍了一种基于 Monte Carlo 的光线跟踪模型,名为 LightCapture,该模型模拟微流体水处理反应器中的光吸收。LightCapture 模型用于预测由微柱组成的反应器中的几何 - 光相互作用相关性。这是确定反应器整体光催化效率的关键步骤。为了评估性能,该模型被应用于确定使用一系列 TiO2 光催化微柱的微反应器中的光捕获效率,这些微反应器正在开发用于在深空任务期间处理航天器上的循环水,结果与实验测试非常一致。本论文为加速发现宽带隙半导体提供了指导原则。提出的许多方法和工具已成功用于为实验制造提供指导原则。

著录项

  • 作者

    Mirabedini, Pegah S.;

  • 作者单位

    University of California, Riverside.;

    University of California, Riverside.;

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;University of California, Riverside.;University of California, Riverside.;
  • 学科 Materials science.
  • 学位
  • 年度 2021
  • 页码 205
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Materials science.;

    机译:材料科学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号