首页> 外文学位 >Core-Shell-Shell Nanoparticles for the Plasmonic Enhancement of Hematite for Photoelectrochemical Water Splitting
【24h】

Core-Shell-Shell Nanoparticles for the Plasmonic Enhancement of Hematite for Photoelectrochemical Water Splitting

机译:核-壳-壳纳米粒子用于赤铁矿的等离子体增强,用于光电化学水分解

获取原文
获取原文并翻译 | 示例

摘要

Photoelectrochemical (PEC) water splitting is a promising method to harness and store the sun's energy in the form of H2 gas. Hematite (α-Fe2O3) is a potentially outstanding photoanode material for such PEC cells, with excellent stability, earth-abundant materials, and high theoretical solar-to-hydrogen efficiency. However, more optimization is needed in practice to make hematite a viable candidate for future large-scale hydrogen production. This thesis focuses on the plasmonic enhancement of hematite nanostructured photoanodes through the novel use of Au SiO2 Au core-shell-shell (CSS) nanoparticles. Two different CSS/hematite architectures have been studied – a top-deposited configuration with the CSS NPs on the surface of the hematite, and an embedded configuration with the hematite nanocorals grown over the CSS NPs. The average photocurrent density, as a measure of the PEC activity, was found to improve by a factor of 27% from bare hematite to the top-deposited CSS NP/hematite configuration, and improved by a factor of 90% for the embedded CSS NP/hematite configuration. In particular, the best embedded sample showed an improvement in photocurrent density from 0.82 mA/cm2 with bare hematite to 3.0 mA/cm2 with embedded CSS NPs. This is over a 200% improvement, or a 2.18 mA/cm2 raw photocurrent improvement, representing, to the best of my knowledge, the highest plasmonic-based improvement of any reported hematite photoelectrocatalytic system. Comparison with Au NPs shows that the CSS NP outperformed Au NPs by 2 times in the top-deposited configuration and up to 4 times in the embedded configuration. These results highlight CSS NPs as a new and improved plasmonic system for enhancing the photocatalytic performance of hematite, and could play a key role in pushing hematite to solar-to-hydrogen efficiencies suitable for large-scale H2 production.
机译:光电化学 (PEC) 分解水是一种很有前途的方法,可以以 H2 气体的形式利用和储存太阳能。赤铁矿 (α-Fe2O3) 是一种用于此类 PEC 电池的潜在杰出光负极材料,具有出色的稳定性、丰富的材料和较高的理论太阳能制氢效率。然而,在实践中需要更多的优化,才能使赤铁矿成为未来大规模制氢的可行候选者。本论文的重点是通过新颖地使用 Au SiO2 Au 核-壳-壳 (CSS) 纳米颗粒来增强赤铁矿纳米结构光阳极的等离子体增强。已经研究了两种不同的 CSS/赤铁矿结构——一种是顶部沉积配置,其中 CSS NPs 位于赤铁矿表面,另一种嵌入配置,赤铁矿纳米珊瑚生长在 CSS NPs 上。作为 PEC 活性的量度,发现平均光电流密度从裸赤铁矿到顶部沉积的 CSS NP/赤铁矿配置提高了 27%,而嵌入的 CSS NP/赤铁矿配置提高了 90%。特别是,最好的嵌入样品显示光电流密度从裸赤铁矿的 0.82 mA/cm2 提高到嵌入 CSS NPs 的 3.0 mA/cm2。这是超过 200% 的改进,或 2.18 mA/cm2 的原始光电流改进,据我所知,这是所有已报道的赤铁矿光电催化系统中基于等离子体的最高改进。与 Au NPs 的比较表明,CSS NP 在顶部沉积配置中比 Au NPs 高 2 倍,在嵌入式配置中比 Au NP 高 4 倍。这些结果突出了 CSS NPs 是一种新的和改进的等离子体系统,可以提高赤铁矿的光催化性能,并可能在推动赤铁矿达到适合大规模 H2 生产的太阳能制氢效率方面发挥关键作用。

著录项

  • 作者

    Pihuleac, Brian .;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Nanoscience.;Energy.;Chemistry.
  • 学位
  • 年度 2020
  • 页码 55
  • 总页数 55
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanoscience.; Energy.; Chemistry.;

    机译:纳米科学。;能源。;化学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号