首页> 外文学位 >Spinning a Web of Lies: Examining Personality, Acquiescence, and Evaluation within Latent Variable Network Models
【24h】

Spinning a Web of Lies: Examining Personality, Acquiescence, and Evaluation within Latent Variable Network Models

机译:编织谎言之网:在潜在可变网络模型中检查人格、默许和评估

获取原文
获取原文并翻译 | 示例

摘要

Personality is often conceptualized in dimensional terms. Researchers have previously attempted to measure response style (i.e., the systematic preference or avoidance of specific response categories in rating attitudinal and personality items; Paulhus, 1991): acquiescence (i.e., the tendency for participants to agree with both regular and reversed items on measures; Plieninger & Heck, 2018) and evaluation (i.e., the gauging of a measure as good or bad by participants; B?ckstr?m & Bj?rklund, 2014; Saucier, 1994). Recent literature (e.g., Biderman et al., 2018, 2019) incorporated acquiescence and evaluation into traditional factor analysis, creating bifactor personality models (i.e., a single general factor reflecting common variance amongst all scale items and group factors that reflect additional common variance among item clusters that typically have similar content; Reise, 2012). Since recent studies (e.g., Biderman et al., 2018, 2019) demonstrated how evaluation and acquiescence factors are implemented into bifactor models within personality measurement, and a new type of network model analysis allows for the inclusion of latent factors within a network, this project created two latent network models (LNMs) of the Five Factor Model with one LNM not accounting for response styles (i.e., acquiescence and evaluation) and the other LNM accounting for response styles, two residual network models (RNMs) of the Five Factor Model with one RNM not accounting for response styles and the other RNM accounting for response styles, and two factor models (i.e., confirmatory factor analysis) of the Five Factor Model with one factor model not accounting for response styles and the other factor model accounting for response styles. All models were examined to determine which model fit provided the most accurate structure of personality measurement as measured through fit statistics. Models were estimated with precollected online IPIP data. I hypothesized that network and bifactor models accounting for response styles would have better fit statistics than models that did not include response styles, suggesting that the bifactor models provided more accurate interpretations of personality structures than models that did not account for these factors. Results showed that LNM and factor models that accounted for response styles were marginally better than LNM and factor models that did not account for response styles. RNMs were the best fitting models out of all estimated models. This suggests that accounting for response styles marginally improves model fit and that RNMs provide more accurate measurement of personality structures in cross-sectional personality data utilizing the IPIP. Implications are discussed.
机译:人格通常以维度术语进行概念化。 研究人员以前曾试图测量反应风格(即,在对态度和人格项目进行评分时对特定反应类别的系统偏好或回避;Paulhus,1991年):默许(即参与者倾向于同意关于措施的常规项目和颠倒项目;Plieninger & Heck,2018)和评估(即参与者衡量一项措施的好坏;B?ckstr?m & Bj?rklund, 2014;Saucier,1994年)。 最近的文献(例如,Biderman 等人,2018 年,2019 年)将默许和评估纳入传统因素分析,创建了双因素人格模型(即,反映所有量表项目之间共同方差的单一一般因素和反映通常具有相似内容的项目集群之间额外共同方差的组因子;Reise,2012 年)。 由于最近的研究(例如,Biderman 等人,2018 年、2019 年)展示了如何在人格测量中将评估和默许因素实施到双因素模型中,并且一种新型的网络模型分析允许在网络中包含潜在因素,该项目创建了五因素模型的两个潜在网络模型 (LNM),其中一个 LNM 不考虑反应风格(即、默许和评估)和其他 LNM 考虑响应风格,五因素模型的两个残差网络模型 (RNM),其中一个 RNM 不考虑响应风格,另一个 RNM 考虑响应风格,以及五因素模型的两个因素模型(即验证性因子分析),其中一个因素模型不考虑响应风格,另一个因子模型考虑响应风格。 检查所有模型,以确定哪种模型拟合提供了最准确的性格测量结构,通过拟合统计进行测量。 使用预先收集的在线IPIP数据对模型进行估计。 我假设考虑反应风格的网络和双因素模型比不包括反应风格的模型具有更好的拟合统计量,这表明双因素模型比不考虑这些因素的模型更准确地解释了人格结构。 结果显示,考虑反应风格的LNM和因子模型略优于不考虑反应风格的LNM和因子模型。 RNM是所有估计模型中拟合度最高的模型。 这表明,考虑反应风格略微改善了模型拟合度,并且 RNM 利用 IPIP 在横断面人格数据中提供了更准确的人格结构测量。 讨论了影响。

著录项

  • 作者

    Obert, Gregory T.;

  • 作者单位

    Rosalind Franklin University of Medicine and Science.;

  • 授予单位 Rosalind Franklin University of Medicine and Science.;
  • 学科 Clinical psychology.;Personality psychology.
  • 学位
  • 年度 2023
  • 页码 123
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Clinical psychology.; Personality psychology.;

    机译:临床心理学。;人格心理学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号