The seriation problem seeks to order a sequence of n objects when the only information we are given is a dissimilarity matrix between all pairs of objects. In linear seriation the goal is to find a linear order of the objects in a manner that is consistent with their dissimilarity. For this problem optimal O(n2) algorithms are known. A generalization of the previous problem is circular seriation, where the goal is to find a circular order instead. In this thesis we study the circular seriation problem. Our contributions can be summarized as follows. First, we introduce circular Robinson matrices as the natural class of dissimilarity matrices for the circular seriation problem. Second, for the case of strict circular Robinson dissimilarity matrices we provide an optimal O(n2) algorithm for the circular seriation problem. Finally, we propose a statistical model to analyze the well-posedness of the circular seriation problem for large n. In particular, we establish O(log(n)/n) rates on the distance between any circular ordering found by solving the circular seriation problem to the underlying order of the model, in the Kendall-tau metric.
展开▼
机译:序列问题试图对 n 个对象的序列进行排序,当我们得到的唯一信息是所有对象对之间的相异矩阵时。在线性系列化中,目标是以与对象的不相似性一致的方式找到对象的线性顺序。对于这个问题,最优 O(n2) 算法是已知的。前一个问题的推广是循环系列化,其中的目标是找到一个循环顺序。在本论文中,我们研究了圆形系列问题。我们的贡献可以总结如下。首先,我们引入圆形 Robinson 矩阵作为圆形系列问题的自然相异矩阵类。其次,对于严格圆形 Robinson 不相似矩阵的情况,我们为圆系列化问题提供了最优的 O(n2) 算法。最后,我们提出了一个统计模型来分析大 n 的圆系列化问题的适定性。特别是,我们通过解决圆系列问题到模型的基本顺序,在 Kendall-tau 度量中,根据找到的任何循环顺序之间的距离建立 O(log(n)/n) 比率。
展开▼