首页> 外文学位 >A New Family of Fault Tolerant Quantum Reed-Muller Codes
【24h】

A New Family of Fault Tolerant Quantum Reed-Muller Codes

机译:新的容错量子 Reed-Muller 码系列

获取原文
获取原文并翻译 | 示例

摘要

Fault tolerant quantum computation is a critical step in the development of practical quantum computers. Unfortunately, not every quantum error correcting code can be used for fault tolerant computation. Rengaswamy et. al. define CSS-T codes, which are CSS codes that admit the transversal application of the T gate, which is a key step in achieving fault tolerant computation. They then present a family of quantum Reed-Muller fault tolerant codes. Their family of codes admits a transversal T gate, but the asymptotic rate of the family is zero. We build on their work by reframing their CSS-T conditions using the concept of self-orthogonality. Using this framework, we define an alternative family of quantum Reed-Muller fault tolerant codes. Like the quantum Reed-Muller family found by Rengaswamy et. al., our family admits a transversal T gate, but also has a nonvanishing asymptotic rate.We prove three key results in our search for a Reed-Muller CSS-T family with a nonvanishing rate. First, we show an equivalence between a code containing a self-dual subcode and the dual of that code being self-orthogonal. This allows us to more easily determine if a pair of codes define a CSS-T code. Next, we show that if C1 and C2 are both Reed-Muller codes that form a CSS-T code, C1 must be self-orthogonal. This limits the rate of any family that is constructed solely from Reed-Muller codes. Lastly, we define a family of CSS-T codes by choosing C1 = RM(r, 2r + 1) and C2 = RM(0, 2r + 1) for some nonnegative integer r. We show that this family has an asymptotic rate of 1/2, and show that it is the only possible CSS-T family constructed only from Reed-Muller codes where C1 is self dual.
机译:容错量子计算是开发实用量子计算机的关键步骤。遗憾的是,并非每个量子纠错代码都可用于容错计算。Rengaswamy 等人。定义 CSS-T 代码,这些代码是允许 T 门横向应用的 CSS 代码,这是实现容错计算的关键步骤。然后,他们提出了一系列量子 Reed-Muller 容错码。他们的代码族允许横向 T 门,但该系列的渐近率为零。我们通过使用自正交性的概念重构他们的 CSS-T 条件来建立他们的工作。使用这个框架,我们定义了一个替代的量子 Reed-Muller 容错代码系列。就像 Rengaswamy 等人发现的量子 Reed-Muller 家族一样。al.,我们的科承认横向 T 门,但也具有非消失渐近率。我们在寻找具有非消失率的 Reed-Muller CSS-T 系列时证明了三个关键结果。首先,我们展示了包含 self-dual 子码的代码与该代码的 dual 是 self-orthogonal 之间的等价性。这使我们能够更轻松地确定一对代码是否定义了 CSS-T 代码。接下来,我们表明,如果 C1 和 C2 都是形成 CSS-T 码的 Reed-Muller 码,那么 C1 必须是自正交的。这限制了仅由 Reed-Muller 规范构建的任何族的速率。最后,我们通过选择 C1 = RM(r, 2r + 1) 和 C2 = RM(0, 2r + 1) 来定义一系列 CSS-T 代码。我们表明该族具有 1/2 的渐近率,并表明它是唯一可能的仅由 Reed-Muller 码构建的 CSS-T 族,其中 C1 是自对偶的。

著录项

  • 作者

    Eggers, Harrison.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Applied mathematics.
  • 学位
  • 年度 2020
  • 页码 58
  • 总页数 58
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Applied mathematics.;

    机译:应用数学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号