首页> 外文学位 >DC Microgrid Modeling and Control in Islanded Mode
【24h】

DC Microgrid Modeling and Control in Islanded Mode

机译:孤岛模式下的直流微电网建模和控制

获取原文
获取原文并翻译 | 示例

摘要

Microgrid is new emerging power distribution infrastructures, in smart grid architectures that has the potential to solve major problems arising from distributed generation. Microgrid is defined as the cluster of multiple distributed generators (DGs) that supply electrical energy to consumers with lower power loss. The realization of demand response, efficient energy management, high capability of Distributed Energy Resources (DERs), and high-reliability of electricity delivery leads to a successful Microgrid.In this thesis, DC Microgrid in islanded mode was modelled and controlled and its performance is tested for 24 hours period. The different distributed energy generation systems used are photovoltaic (PV) system, battery energy storage (BESS) system and fuel cell (FC). PV system is modelled by calculating series and shunt resistances of thereal life equivalent circuit of the Solar Cell. Four experiments were performed in the Smart Energy lab, RIT Dubai, for the PV systems, to calculate open circuit voltage and short circuit current, to plot the IV characteristics of the PV system, and to track the maximum power point at different irradiances and calculating the daily irradiances. FC modeling was performed in Simulink, the fuel flow was controlled by the output current of the FC to reach the nominal current of 133.3 A and nominal voltage of 45 V. Lithium Ion batteries were used for storing energy generated by the PV system when the supply power exceeds the demand power. Demand power was estimated as the usual daily demand for 24 hours. Controlling these generation systems is performed using converters. Boost Converter used for the PV system was controlled by Maximum Power Point Tracking (MPPT) incremental conductance algorithm to maintain a constant voltage of 300 V at the DC bus despite daily change of the solar power in a day. Boost Buck converter is used to control the charging and discharging processes of the BESS to maintain a constant voltage at the input terminals of the battery to charge it at 130 V and a constant voltage at the DC bus. Boost Converter used for the FC maintained a constantvoltage of 100 V.
机译:微电网是智能电网架构中新兴的配电基础设施,有可能解决分布式发电引起的重大问题。微电网被定义为多个分布式发电机 (DG) 的集群,以较低的功率损耗向消费者提供电能。需求响应的实现、高效的能源管理、分布式能源 (DER) 的高容量以及电力输送的高可靠性导致了本文的成功 Microgrid.In 本文对孤岛模式下的直流微电网进行建模和控制,并对其性能进行了 24 小时的测试。使用的不同分布式能源发电系统是光伏 (PV) 系统、电池储能 (BESS) 系统和燃料电池 (FC)。光伏系统是通过计算太阳能电池的寿命等效电路的串联电阻和分流电阻来建模的。在 RIT Dubai 的智能能源实验室为光伏系统进行了四次实验,以计算开路电压和短路电流,绘制光伏系统的 IV 特性,并跟踪不同辐照度下的最大功率点并计算每日辐照度。在 Simulink 中进行 FC 建模,燃料流由 FC 的输出电流控制,达到 133.3 A 的标称电流和 45 V 的标称电压。锂离子电池用于储存光伏系统在供电功率超过需求功率时产生的能量。需求功率估计为 24 小时内的正常每日需求。这些发电系统通过变频器进行控制。用于光伏系统的升压转换器由最大功率点跟踪 (MPPT) 增量电导算法控制,以在直流母线上保持 300 V 的恒定电压,尽管太阳能每天都在变化。Boost Buck 转换器用于控制 BESS 的充电和放电过程,以保持电池输入端子的恒定电压以 130 V 充电,并在直流总线上保持恒定电压。用于 FC 的升压转换器保持 100 V 的恒定电压。

著录项

  • 作者

    Bahij, Zeina;

  • 作者单位

    Rochester Institute of Technology;

    Rochester Institute of Technology;

    Rochester Institute of Technology;

  • 授予单位 Rochester Institute of Technology;Rochester Institute of Technology;Rochester Institute of Technology;
  • 学科 Electrical engineering;Energy
  • 学位
  • 年度 2021
  • 页码 96
  • 总页数 96
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electrical engineering; Energy;

    机译:电气工程;能源;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号